Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1401.2838
Cited By
GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation
13 January 2014
Edward Meeds
Max Welling
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation"
50 / 67 papers shown
Title
Multilevel neural simulation-based inference
Yuga Hikida
Ayush Bharti
Niall Jeffrey
F. Briol
60
0
0
06 Jun 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
165
14
0
03 Jan 2025
Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference
Sam Griesemer
Defu Cao
Zijun Cui
Carolina Osorio
Yang Liu
125
3
0
07 Dec 2024
Cost-aware Simulation-based Inference
Ayush Bharti
Daolang Huang
Samuel Kaski
F. Briol
87
2
0
10 Oct 2024
Bayesian Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
David J. Nott
191
220
0
09 May 2023
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
Louis Sharrock
J. Simons
Song Liu
Mark Beaumont
DiffM
126
39
0
10 Oct 2022
GATSBI: Generative Adversarial Training for Simulation-Based Inference
Poornima Ramesh
Jan-Matthis Lueckmann
Jan Boelts
Álvaro Tejero-Cantero
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
GAN
81
37
0
12 Mar 2022
Approximate Bayesian Computation for Physical Inverse Modeling
Neel Chatterjee
Somya Sharma
S. Swisher
Snigdhansu Chatterjee
18
0
0
26 Nov 2021
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference
Niccolò Dalmasso
Luca Masserano
David Y. Zhao
Rafael Izbicki
Ann B. Lee
190
7
0
08 Jul 2021
Deep Bayesian Active Learning for Accelerating Stochastic Simulation
D. Wu
Ruijia Niu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
117
9
0
05 Jun 2021
Warped Gradient-Enhanced Gaussian Process Surrogate Models for Exponential Family Likelihoods with Intractable Normalizing Constants
Quan Vu
M. Moores
A. Zammit‐Mangion
61
1
0
10 May 2021
Approximate Bayesian inference from noisy likelihoods with Gaussian process emulated MCMC
Marko Jarvenpaa
J. Corander
61
5
0
08 Apr 2021
No-Regret Algorithms for Private Gaussian Process Bandit Optimization
Abhimanyu Dubey
66
13
0
24 Feb 2021
Inverse Gaussian Process regression for likelihood-free inference
Hongqiao Wang
Ziqiao Ao
Tengchao Yu
Jinglai Li
29
1
0
21 Feb 2021
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
267
198
0
12 Jan 2021
Score Matched Neural Exponential Families for Likelihood-Free Inference
Lorenzo Pacchiardi
Ritabrata Dutta
234
28
0
20 Dec 2020
On the accept-reject mechanism for Metropolis-Hastings algorithms
N. Glatt-Holtz
J. Krometis
Cecilia F. Mondaini
88
10
0
09 Nov 2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
101
10
0
18 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
102
14
0
08 Jun 2020
Bayesian Computation with Intractable Likelihoods
M. Moores
A. Pettitt
Kerrie Mengersen
TPM
102
3
0
08 Apr 2020
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
Hans Kersting
N. Krämer
Martin Schiegg
Christian Daniel
Michael Tiemann
Philipp Hennig
70
21
0
21 Feb 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
233
124
0
10 Feb 2020
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
266
857
0
04 Nov 2019
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
100
47
0
29 Oct 2019
Batch simulations and uncertainty quantification in Gaussian process surrogate approximate Bayesian computation
Marko Jarvenpaa
Aki Vehtari
Pekka Marttinen
64
15
0
14 Oct 2019
Distance-learning For Approximate Bayesian Computation To Model a Volcanic Eruption
Lorenzo Pacchiardi
Pierre Künzli
Marcel Schoengens
B. Chopard
Ritabrata Dutta
65
13
0
28 Sep 2019
A review of Approximate Bayesian Computation methods via density estimation: inference for simulator-models
C. Grazian
Yanan Fan
TPM
51
22
0
06 Sep 2019
Bayesian Deconditional Kernel Mean Embeddings
Kelvin Hsu
F. Ramos
CML
BDL
46
9
0
01 Jun 2019
Validation of Approximate Likelihood and Emulator Models for Computationally Intensive Simulations
Niccolò Dalmasso
Ann B. Lee
Rafael Izbicki
T. Pospisil
Ilmun Kim
Chieh-An Lin
73
8
0
27 May 2019
Finding our Way in the Dark: Approximate MCMC for Approximate Bayesian Methods
Evgeny Levi
Radu V. Craiu
68
6
0
16 May 2019
Parallel Gaussian process surrogate Bayesian inference with noisy likelihood evaluations
Marko Jarvenpaa
Michael U. Gutmann
Aki Vehtari
Pekka Marttinen
118
41
0
03 May 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
124
20
0
10 Mar 2019
Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic Likelihood-Free Inference
Kelvin Hsu
F. Ramos
59
12
0
03 Mar 2019
Bayesian inference using synthetic likelihood: asymptotics and adjustments
David T. Frazier
David J. Nott
Christopher C. Drovandi
Robert Kohn
88
41
0
13 Feb 2019
Credit Assignment Techniques in Stochastic Computation Graphs
T. Weber
N. Heess
Lars Buesing
David Silver
98
45
0
07 Jan 2019
Information geometry for approximate Bayesian computation
K. Spiliopoulos
36
1
0
05 Dec 2018
Machine Learning Accelerated Likelihood-Free Event Reconstruction in Dark Matter Direct Detection
U. Simola
B. Pelssers
D. Barge
J. Conrad
J. Corander
134
11
0
23 Oct 2018
A Function Emulation Approach for Doubly Intractable Distributions
Jaewoo Park
M. Haran
TPM
79
15
0
20 Jun 2018
Accelerating delayed-acceptance Markov chain Monte Carlo algorithms
Samuel Wiqvist
Umberto Picchini
J. Forman
Kresten Lindorff-Larsen
Wouter Boomsma
40
8
0
15 Jun 2018
Likelihood-free inference with emulator networks
Jan-Matthis Lueckmann
Giacomo Bassetto
Theofanis Karaletsos
Jakob H. Macke
181
128
0
23 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
552
370
0
18 May 2018
Approximating the Likelihood in Approximate Bayesian Computation
Christopher C. Drovandi
Clara Grazian
Kerrie Mengersen
Christian P. Robert
80
12
0
18 Mar 2018
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
T. Kajihara
Motonobu Kanagawa
Keisuke Yamazaki
Kenji Fukumizu
96
13
0
23 Feb 2018
Variational Inference over Non-differentiable Cardiac Simulators using Bayesian Optimization
Adam McCarthy
Blanca Rodriguez
A. Mincholé
155
5
0
09 Dec 2017
Bootstrapped synthetic likelihood
R. Everitt
231
14
0
15 Nov 2017
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
193
249
0
06 Nov 2017
Marginal sequential Monte Carlo for doubly intractable models
R. Everitt
D. Prangle
Philip Maybank
M. Bell
53
8
0
12 Oct 2017
Efficient acquisition rules for model-based approximate Bayesian computation
Marko Jarvenpaa
Michael U. Gutmann
Arijus Pleska
Aki Vehtari
Pekka Marttinen
TPM
202
69
0
03 Apr 2017
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
234
151
0
30 Nov 2016
Gaussian process modeling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria
Marko Jarvenpaa
Michael U. Gutmann
Aki Vehtari
Pekka Marttinen
206
41
0
20 Oct 2016
1
2
Next