Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1308.3432
Cited By
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
15 August 2013
Yoshua Bengio
Nicholas Léonard
Aaron Courville
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation"
50 / 1,513 papers shown
Title
Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation
Hao Wu
Patrick Judd
Xiaojie Zhang
Mikhail Isaev
Paulius Micikevicius
MQ
105
362
0
20 Apr 2020
LSQ+: Improving low-bit quantization through learnable offsets and better initialization
Yash Bhalgat
Jinwon Lee
Markus Nagel
Tijmen Blankevoort
Nojun Kwak
MQ
67
223
0
20 Apr 2020
Role-Wise Data Augmentation for Knowledge Distillation
Jie Fu
Xue Geng
Zhijian Duan
Bohan Zhuang
Xingdi Yuan
Adam Trischler
Jie Lin
C. Pal
Hao Dong
72
15
0
19 Apr 2020
Training with Quantization Noise for Extreme Model Compression
Angela Fan
Pierre Stock
Benjamin Graham
Edouard Grave
Remi Gribonval
Hervé Jégou
Armand Joulin
MQ
113
246
0
15 Apr 2020
Speech Translation and the End-to-End Promise: Taking Stock of Where We Are
Matthias Sperber
Matthias Paulik
74
112
0
14 Apr 2020
Explaining Question Answering Models through Text Generation
Veronica Latcinnik
Jonathan Berant
LRM
101
51
0
12 Apr 2020
LogicNets: Co-Designed Neural Networks and Circuits for Extreme-Throughput Applications
Yaman Umuroglu
Yash Akhauri
Nicholas J. Fraser
Michaela Blott
MQ
69
91
0
06 Apr 2020
Conditional Channel Gated Networks for Task-Aware Continual Learning
Davide Abati
Jakub M. Tomczak
Tijmen Blankevoort
Simone Calderara
Rita Cucchiara
B. Bejnordi
CLL
102
187
0
31 Mar 2020
Binary Neural Networks: A Survey
Haotong Qin
Ruihao Gong
Xianglong Liu
Xiao Bai
Jingkuan Song
N. Sebe
MQ
145
476
0
31 Mar 2020
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
247
207
0
22 Mar 2020
Solving Inverse Problems with a Flow-based Noise Model
Jay Whang
Qi Lei
A. Dimakis
132
39
0
18 Mar 2020
Efficient Bitwidth Search for Practical Mixed Precision Neural Network
Yuhang Li
Wei Wang
Haoli Bai
Ruihao Gong
Xin Dong
F. Yu
MQ
54
21
0
17 Mar 2020
Efficient Content-Based Sparse Attention with Routing Transformers
Aurko Roy
M. Saffar
Ashish Vaswani
David Grangier
MoE
424
607
0
12 Mar 2020
DADA: Differentiable Automatic Data Augmentation
Yonggang Li
Guosheng Hu
Yongtao Wang
Timothy M. Hospedales
N. Robertson
Yongxin Yang
92
110
0
08 Mar 2020
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
Esteban Real
Chen Liang
David R. So
Quoc V. Le
79
226
0
06 Mar 2020
A Survey on Deep Hashing Methods
Xiao Luo
Haixin Wang
Huasong Zhong
C. L. Philip Chen
Minghua Deng
Jianqiang Huang
Xiansheng Hua
153
182
0
04 Mar 2020
Learning to Hash with Graph Neural Networks for Recommender Systems
Qiaoyu Tan
Ninghao Liu
Xing Zhao
Hongxia Yang
Jingren Zhou
Helen Zhou
163
94
0
04 Mar 2020
Depth-Adaptive Graph Recurrent Network for Text Classification
Yijin Liu
Fandong Meng
Jinan Xu
Jinan Xu
Jie Zhou
48
3
0
29 Feb 2020
WaveQ: Gradient-Based Deep Quantization of Neural Networks through Sinusoidal Adaptive Regularization
Ahmed T. Elthakeb
Prannoy Pilligundla
Fatemehsadat Mireshghallah
T. Elgindi
Charles-Alban Deledalle
H. Esmaeilzadeh
MQ
62
10
0
29 Feb 2020
Auto-Encoding Twin-Bottleneck Hashing
Yuming Shen
Jie Qin
Jiaxin Chen
Mengyang Yu
Li Liu
Fan Zhu
Fumin Shen
Ling Shao
102
122
0
27 Feb 2020
Training Binary Neural Networks using the Bayesian Learning Rule
Xiangming Meng
Roman Bachmann
Mohammad Emtiyaz Khan
BDL
MQ
103
43
0
25 Feb 2020
Robust Quantization: One Model to Rule Them All
Moran Shkolnik
Brian Chmiel
Ron Banner
Gil Shomron
Yury Nahshan
A. Bronstein
U. Weiser
OOD
MQ
104
76
0
18 Feb 2020
BinaryDuo: Reducing Gradient Mismatch in Binary Activation Network by Coupling Binary Activations
Hyungjun Kim
Kyungsu Kim
Jinseok Kim
Jae-Joon Kim
MQ
80
48
0
16 Feb 2020
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W. Kool
H. V. Hoof
Max Welling
BDL
143
50
0
14 Feb 2020
Switchable Precision Neural Networks
Luis Guerra
Bohan Zhuang
Ian Reid
Tom Drummond
MQ
57
20
0
07 Feb 2020
Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow
Didrik Nielsen
Ole Winther
MQ
235
13
0
06 Feb 2020
Deep Learning-based Image Compression with Trellis Coded Quantization
Binglin Li
Mohammad Akbari
Jie Liang
Yang Wang
MQ
41
9
0
26 Jan 2020
Latency-Aware Differentiable Neural Architecture Search
Yuhui Xu
Lingxi Xie
Xiaopeng Zhang
Xin Chen
Bowen Shi
Qi Tian
H. Xiong
OOD
70
33
0
17 Jan 2020
MeliusNet: Can Binary Neural Networks Achieve MobileNet-level Accuracy?
Joseph Bethge
Christian Bartz
Haojin Yang
Ying-Cong Chen
Christoph Meinel
MQ
89
91
0
16 Jan 2020
Noisy Machines: Understanding Noisy Neural Networks and Enhancing Robustness to Analog Hardware Errors Using Distillation
Chuteng Zhou
Prad Kadambi
Matthew Mattina
P. Whatmough
57
35
0
14 Jan 2020
AdaBERT: Task-Adaptive BERT Compression with Differentiable Neural Architecture Search
Daoyuan Chen
Yaliang Li
Minghui Qiu
Zhen Wang
Bofang Li
Bolin Ding
Hongbo Deng
Jun Huang
Wei Lin
Jingren Zhou
MQ
97
104
0
13 Jan 2020
Least squares binary quantization of neural networks
Hadi Pouransari
Zhucheng Tu
Oncel Tuzel
MQ
82
32
0
09 Jan 2020
Resource-Efficient Neural Networks for Embedded Systems
Wolfgang Roth
Günther Schindler
Lukas Pfeifenberger
Robert Peharz
Sebastian Tschiatschek
Holger Fröning
Franz Pernkopf
Zoubin Ghahramani
90
51
0
07 Jan 2020
Attention over Parameters for Dialogue Systems
Andrea Madotto
Zhaojiang Lin
Chien-Sheng Wu
Jamin Shin
Pascale Fung
104
20
0
07 Jan 2020
Generalizing Emergent Communication
Thomas A. Unger
Elia Bruni
63
1
0
06 Jan 2020
Mixed-Precision Quantized Neural Network with Progressively Decreasing Bitwidth For Image Classification and Object Detection
Tianshu Chu
Qin Luo
Jie Yang
Xiaolin Huang
MQ
40
6
0
29 Dec 2019
Towards Efficient Training for Neural Network Quantization
Qing Jin
Linjie Yang
Zhenyu A. Liao
MQ
115
42
0
21 Dec 2019
Triple Generative Adversarial Networks
Chongxuan Li
Kun Xu
Jiashuo Liu
Jun Zhu
Bo Zhang
GAN
85
43
0
20 Dec 2019
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
Gabriel Loaiza-Ganem
John P. Cunningham
111
30
0
19 Dec 2019
Learned Variable-Rate Image Compression with Residual Divisive Normalization
Mohammad Akbari
Jie Liang
Jingning Han
Chengjie Tu
49
25
0
11 Dec 2019
Neural-Symbolic Descriptive Action Model from Images: The Search for STRIPS
Masataro Asai
69
4
0
11 Dec 2019
Winning the Lottery with Continuous Sparsification
Pedro H. P. Savarese
Hugo Silva
Michael Maire
100
137
0
10 Dec 2019
InfoCNF: An Efficient Conditional Continuous Normalizing Flow with Adaptive Solvers
T. Nguyen
Animesh Garg
Richard G. Baraniuk
Anima Anandkumar
TPM
113
9
0
09 Dec 2019
Dynamic Convolutions: Exploiting Spatial Sparsity for Faster Inference
Thomas Verelst
Tinne Tuytelaars
80
153
0
06 Dec 2019
Sampling-Free Learning of Bayesian Quantized Neural Networks
Jiahao Su
Milan Cvitkovic
Furong Huang
BDL
MQ
UQCV
47
7
0
06 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
236
1,725
0
05 Dec 2019
RTN: Reparameterized Ternary Network
Yuhang Li
Xin Dong
Shanghang Zhang
Haoli Bai
Yuanpeng Chen
Wei Wang
MQ
69
29
0
04 Dec 2019
Dream to Control: Learning Behaviors by Latent Imagination
Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
VLM
206
1,378
0
03 Dec 2019
The Knowledge Within: Methods for Data-Free Model Compression
Matan Haroush
Itay Hubara
Elad Hoffer
Daniel Soudry
84
110
0
03 Dec 2019
A binary-activation, multi-level weight RNN and training algorithm for ADC-/DAC-free and noise-resilient processing-in-memory inference with eNVM
Siming Ma
David Brooks
Gu-Yeon Wei
MQ
29
2
0
30 Nov 2019
Previous
1
2
3
...
24
25
26
...
29
30
31
Next