ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1308.3432
  4. Cited By
Estimating or Propagating Gradients Through Stochastic Neurons for
  Conditional Computation

Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

15 August 2013
Yoshua Bengio
Nicholas Léonard
Aaron Courville
ArXiv (abs)PDFHTML

Papers citing "Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation"

11 / 1,511 papers shown
Title
Conditional Computation in Neural Networks for faster models
Conditional Computation in Neural Networks for faster models
Emmanuel Bengio
Pierre-Luc Bacon
Joelle Pineau
Doina Precup
AI4CE
172
325
0
19 Nov 2015
Predicting distributions with Linearizing Belief Networks
Predicting distributions with Linearizing Belief Networks
Yann N. Dauphin
David Grangier
67
18
0
17 Nov 2015
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
S. Gu
Sergey Levine
Ilya Sutskever
A. Mnih
BDL
75
143
0
16 Nov 2015
Describing Multimedia Content using Attention-based Encoder--Decoder
  Networks
Describing Multimedia Content using Attention-based Encoder--Decoder Networks
Kyunghyun Cho
Aaron Courville
Yoshua Bengio
95
413
0
04 Jul 2015
Gradient Estimation Using Stochastic Computation Graphs
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
220
395
0
17 Jun 2015
Difference Target Propagation
Difference Target Propagation
Dong-Hyun Lee
Saizheng Zhang
Asja Fischer
Yoshua Bengio
AAML
138
354
0
23 Dec 2014
Exponentially Increasing the Capacity-to-Computation Ratio for
  Conditional Computation in Deep Learning
Exponentially Increasing the Capacity-to-Computation Ratio for Conditional Computation in Deep Learning
Kyunghyun Cho
Yoshua Bengio
119
38
0
28 Jun 2014
Techniques for Learning Binary Stochastic Feedforward Neural Networks
Techniques for Learning Binary Stochastic Feedforward Neural Networks
T. Raiko
Mathias Berglund
Guillaume Alain
Laurent Dinh
BDL
141
126
0
11 Jun 2014
Low-Rank Approximations for Conditional Feedforward Computation in Deep
  Neural Networks
Low-Rank Approximations for Conditional Feedforward Computation in Deep Neural Networks
Andrew S. Davis
I. Arel
109
81
0
16 Dec 2013
Learning Factored Representations in a Deep Mixture of Experts
Learning Factored Representations in a Deep Mixture of Experts
David Eigen
MarcÁurelio Ranzato
Ilya Sutskever
MoE
143
378
0
16 Dec 2013
Deep AutoRegressive Networks
Deep AutoRegressive Networks
Karol Gregor
Ivo Danihelka
A. Mnih
Charles Blundell
Daan Wierstra
AI4TSBDL
123
282
0
31 Oct 2013
Previous
123...293031