ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07686
14
75

Robust Quantization: One Model to Rule Them All

18 February 2020
Moran Shkolnik
Brian Chmiel
Ron Banner
Gil Shomron
Yury Nahshan
A. Bronstein
U. Weiser
    OOD
    MQ
ArXivPDFHTML
Abstract

Neural network quantization methods often involve simulating the quantization process during training, making the trained model highly dependent on the target bit-width and precise way quantization is performed. Robust quantization offers an alternative approach with improved tolerance to different classes of data-types and quantization policies. It opens up new exciting applications where the quantization process is not static and can vary to meet different circumstances and implementations. To address this issue, we propose a method that provides intrinsic robustness to the model against a broad range of quantization processes. Our method is motivated by theoretical arguments and enables us to store a single generic model capable of operating at various bit-widths and quantization policies. We validate our method's effectiveness on different ImageNet models.

View on arXiv
Comments on this paper