Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1305.5029
Cited By
Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates
22 May 2013
Yuchen Zhang
John C. Duchi
Martin J. Wainwright
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates"
50 / 54 papers shown
Title
Supervised Kernel Thinning
Albert Gong
Kyuseong Choi
Raaz Dwivedi
31
0
0
17 Oct 2024
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
62
0
0
24 Aug 2024
Byzantine-tolerant distributed learning of finite mixture models
Qiong Zhang
Jiahua Chen
Jiahua Chen
FedML
53
0
0
19 Jul 2024
Nonlinear Meta-Learning Can Guarantee Faster Rates
Dimitri Meunier
Zhu Li
Arthur Gretton
Samory Kpotufe
35
6
0
20 Jul 2023
Intuitionistic Fuzzy Broad Learning System: Enhancing Robustness Against Noise and Outliers
M. Sajid
A. K. Malik
M. Tanveer
37
14
0
15 Jul 2023
Distributed Gradient Descent for Functional Learning
Zhan Yu
Jun Fan
Zhongjie Shi
Ding-Xuan Zhou
23
1
0
12 May 2023
A review of distributed statistical inference
Yuan Gao
Weidong Liu
Hansheng Wang
Xiaozhou Wang
Yibo Yan
Riquan Zhang
16
42
0
13 Apr 2023
On the Optimality of Misspecified Spectral Algorithms
Hao Zhang
Yicheng Li
Qian Lin
25
15
0
27 Mar 2023
Kernel-Based Distributed Q-Learning: A Scalable Reinforcement Learning Approach for Dynamic Treatment Regimes
Di Wang
Yao Wang
Shaojie Tang
OffRL
21
1
0
21 Feb 2023
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
53
11
0
30 Dec 2022
Statistical Optimality of Divide and Conquer Kernel-based Functional Linear Regression
Jiading Liu
Lei Shi
33
9
0
20 Nov 2022
Communication-efficient Distributed Newton-like Optimization with Gradients and M-estimators
Ziyan Yin
32
0
0
13 Jul 2022
Federated Data Analytics: A Study on Linear Models
Xubo Yue
Raed Al Kontar
Ana María Estrada Gómez
FedML
39
12
0
15 Jun 2022
Markov subsampling based Huber Criterion
Tieliang Gong
Yuxin Dong
Hong Chen
B. Dong
Chen Li
21
2
0
12 Dec 2021
Nyström Regularization for Time Series Forecasting
Zirui Sun
Mingwei Dai
Yao Wang
Shao-Bo Lin
AI4TS
25
2
0
13 Nov 2021
Quantifying Epistemic Uncertainty in Deep Learning
Ziyi Huang
Henry Lam
Haofeng Zhang
UQCV
BDL
UD
PER
24
12
0
23 Oct 2021
Fast Sketching of Polynomial Kernels of Polynomial Degree
Zhao Song
David P. Woodruff
Zheng Yu
Lichen Zhang
26
40
0
21 Aug 2021
Oversampling Divide-and-conquer for Response-skewed Kernel Ridge Regression
Jingyi Zhang
Xiaoxiao Sun
27
0
0
13 Jul 2021
From inexact optimization to learning via gradient concentration
Bernhard Stankewitz
Nicole Mücke
Lorenzo Rosasco
31
5
0
09 Jun 2021
An Accurate and Efficient Large-scale Regression Method through Best Friend Clustering
Kun Li
Liang Yuan
Yunquan Zhang
Gongwei Chen
15
0
0
22 Apr 2021
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
39
18
0
09 Nov 2020
Distributed Learning of Finite Gaussian Mixtures
Qiong Zhang
Jiahua Chen
49
8
0
20 Oct 2020
Generalized Leverage Score Sampling for Neural Networks
Jason D. Lee
Ruoqi Shen
Zhao Song
Mengdi Wang
Zheng Yu
26
42
0
21 Sep 2020
Distributed ARIMA Models for Ultra-long Time Series
Xiaoqian Wang
Yanfei Kang
Rob J. Hyndman
Feng Li
AI4TS
14
50
0
19 Jul 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
33
114
0
18 Jun 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
22
67
0
17 Jun 2020
Federated Accelerated Stochastic Gradient Descent
Honglin Yuan
Tengyu Ma
FedML
30
172
0
16 Jun 2020
Distributed Estimation for Principal Component Analysis: an Enlarged Eigenspace Analysis
Xi Chen
Jason D. Lee
He Li
Yun Yang
28
6
0
05 Apr 2020
Scaling up Kernel Ridge Regression via Locality Sensitive Hashing
Michael Kapralov
Navid Nouri
Ilya P. Razenshteyn
A. Velingker
A. Zandieh
24
13
0
21 Mar 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
98
152
0
02 Mar 2020
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
25
166
0
21 Feb 2020
Fast Polynomial Kernel Classification for Massive Data
Jinshan Zeng
Minrun Wu
Shao-Bo Lin
Ding-Xuan Zhou
TPM
16
5
0
24 Nov 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
30
53
0
21 Oct 2019
Simple and Almost Assumption-Free Out-of-Sample Bound for Random Feature Mapping
Shusen Wang
23
2
0
24 Sep 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
112
2,290
0
04 Jul 2019
Communication-Efficient Accurate Statistical Estimation
Jianqing Fan
Yongyi Guo
Kaizheng Wang
19
110
0
12 Jun 2019
Efficient online learning with kernels for adversarial large scale problems
Rémi Jézéquel
Pierre Gaillard
Alessandro Rudi
16
12
0
26 Feb 2019
Distributed Inference for Linear Support Vector Machine
Xiaozhou Wang
Zhuoyi Yang
Xi Chen
Weidong Liu
19
64
0
29 Nov 2018
First-order Newton-type Estimator for Distributed Estimation and Inference
Xi Chen
Weidong Liu
Yichen Zhang
32
48
0
28 Nov 2018
Quantile Regression Under Memory Constraint
Xi Chen
Weidong Liu
Yichen Zhang
11
116
0
18 Oct 2018
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
17
156
0
26 Apr 2018
Parallel Streaming Wasserstein Barycenters
Matthew Staib
Sebastian Claici
Justin Solomon
Stefanie Jegelka
16
88
0
21 May 2017
Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent
Yudong Chen
Lili Su
Jiaming Xu
FedML
19
241
0
16 May 2017
Preserving Differential Privacy Between Features in Distributed Estimation
C. Heinze-Deml
Brian McWilliams
N. Meinshausen
18
7
0
01 Mar 2017
Distributed inference for quantile regression processes
S. Volgushev
Shih-Kang Chao
Guang Cheng
18
128
0
21 Jan 2017
Parallelizing Stochastic Gradient Descent for Least Squares Regression: mini-batching, averaging, and model misspecification
Prateek Jain
Sham Kakade
Rahul Kidambi
Praneeth Netrapalli
Aaron Sidford
MoMe
21
36
0
12 Oct 2016
Distributed learning with regularized least squares
Shaobo Lin
Xin Guo
Ding-Xuan Zhou
38
190
0
11 Aug 2016
Efficient Distributed Learning with Sparsity
Jialei Wang
Mladen Kolar
Nathan Srebro
Tong Zhang
FedML
32
151
0
25 May 2016
Constructive neural network learning
Shaobo Lin
Jinshan Zeng
Xiaoqin Zhang
14
31
0
30 Apr 2016
Greedy Criterion in Orthogonal Greedy Learning
Lin Xu
Shaobo Lin
Jinshan Zeng
Xia Liu
Zongben Xu
12
10
0
20 Apr 2016
1
2
Next