ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.08713
24
14

Intuitionistic Fuzzy Broad Learning System: Enhancing Robustness Against Noise and Outliers

15 July 2023
M. Sajid
A. K. Malik
M. Tanveer
ArXivPDFHTML
Abstract

In the realm of data classification, broad learning system (BLS) has proven to be a potent tool that utilizes a layer-by-layer feed-forward neural network. However, the traditional BLS treats all samples as equally significant, which makes it less robust and less effective for real-world datasets with noises and outliers. To address this issue, we propose fuzzy broad learning system (F-BLS) and the intuitionistic fuzzy broad learning system (IF-BLS) models that confront challenges posed by the noise and outliers present in the dataset and enhance overall robustness. Employing a fuzzy membership technique, the proposed F-BLS model embeds sample neighborhood information based on the proximity of each class center within the inherent feature space of the BLS framework. Furthermore, the proposed IF-BLS model introduces intuitionistic fuzzy concepts encompassing membership, non-membership, and score value functions. IF-BLS strategically considers homogeneity and heterogeneity in sample neighborhoods in the kernel space. We evaluate the performance of proposed F-BLS and IF-BLS models on UCI benchmark datasets with and without Gaussian noise. As an application, we implement the proposed F-BLS and IF-BLS models to diagnose Alzheimer's disease (AD). Experimental findings and statistical analyses consistently highlight the superior generalization capabilities of the proposed F-BLS and IF-BLS models over baseline models across all scenarios. The proposed models offer a promising solution to enhance the BLS framework's ability to handle noise and outliers. The source code link of the proposed model is available at https://github.com/mtanveer1/IF-BLS.

View on arXiv
Comments on this paper