Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.2944
Cited By
Practical Bayesian Optimization of Machine Learning Algorithms
13 June 2012
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Bayesian Optimization of Machine Learning Algorithms"
50 / 2,247 papers shown
Title
Discretization-free Knowledge Gradient Methods for Bayesian Optimization
Jian Wu
P. Frazier
BDL
21
9
0
20 Jul 2017
Machine Learning for Quantum Dynamics: Deep Learning of Excitation Energy Transfer Properties
Florian Hase
C. Kreisbeck
A. Aspuru‐Guzik
16
55
0
20 Jul 2017
Robust Bayesian Optimization with Student-t Likelihood
Ruben Martinez-Cantin
M. McCourt
K. Tee
18
6
0
18 Jul 2017
Learning to select data for transfer learning with Bayesian Optimization
Sebastian Ruder
Barbara Plank
11
184
0
17 Jul 2017
Efficient Architecture Search by Network Transformation
Han Cai
Tianyao Chen
Weinan Zhang
Yong Yu
Jun Wang
OOD
3DV
32
67
0
16 Jul 2017
Variational approach for learning Markov processes from time series data
Hao Wu
Frank Noé
BDL
AI4TS
6
258
0
14 Jul 2017
Bayesian Optimization for Probabilistic Programs
Tom Rainforth
T. Le
Jan-Willem van de Meent
Michael A. Osborne
Frank Wood
TPM
13
26
0
13 Jul 2017
Ergodic Coverage In Constrained Environments Using Stochastic Trajectory Optimization
E. Ayvali
Hadi Salman
Howie Choset
27
48
0
13 Jul 2017
Distributionally Ambiguous Optimization Techniques for Batch Bayesian Optimization
Nikitas Rontsis
Michael A. Osborne
Paul Goulart
13
4
0
13 Jul 2017
Single-Queue Decoding for Neural Machine Translation
Raphael Shu
Hideki Nakayama
39
0
0
06 Jul 2017
SHADHO: Massively Scalable Hardware-Aware Distributed Hyperparameter Optimization
Jeffery Kinnison
Nathaniel Kremer-Herman
D. Thain
Walter J. Scheirer
25
11
0
05 Jul 2017
Deep neural network initialization with decision trees
K. Humbird
J. Peterson
R. McClarren
16
5
0
03 Jul 2017
Generalising Random Forest Parameter Optimisation to Include Stability and Cost
C. H. B. Liu
B. Chamberlain
Duncan A. Little
Ângelo Cardoso
14
25
0
29 Jun 2017
Constrained Bayesian Optimization with Noisy Experiments
Benjamin Letham
Brian Karrer
Guilherme Ottoni
E. Bakshy
26
296
0
21 Jun 2017
Deriving Compact Laws Based on Algebraic Formulation of a Data Set
Wenqing Xu
M. Stalzer
15
4
0
16 Jun 2017
The Compressed Model of Residual CNDS
Hussam Qassim
David Feinzimer
Abhishek Verma
16
0
0
15 Jun 2017
Criteria Sliders: Learning Continuous Database Criteria via Interactive Ranking
James Tompkin
K. Kim
Hanspeter Pfister
Christian Theobalt
6
4
0
12 Jun 2017
Dealing with Integer-valued Variables in Bayesian Optimization with Gaussian Processes
E.C. Garrido-Merchán
Daniel Hernández-Lobato
59
227
0
12 Jun 2017
YellowFin and the Art of Momentum Tuning
Jian Zhang
Ioannis Mitliagkas
ODL
23
108
0
12 Jun 2017
Toward Optimal Run Racing: Application to Deep Learning Calibration
Olivier Bousquet
Sylvain Gelly
Karol Kurach
Marc Schoenauer
Michele Sebag
O. Teytaud
Damien Vincent
15
1
0
10 Jun 2017
Estimating Shape Parameters of Piecewise Linear-Quadratic Problems
P. Zheng
Aleksandr Aravkin
Karthikeyan N. Ramamurthy
8
0
0
06 Jun 2017
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer-Knapp
Alán Aspuru-Guzik
33
178
0
06 Jun 2017
Open Loop Hyperparameter Optimization and Determinantal Point Processes
Jesse Dodge
Catrìona Anderson
Noah A. Smith
36
2
0
06 Jun 2017
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Zi Wang
Clement Gehring
Pushmeet Kohli
Stefanie Jegelka
UQCV
14
209
0
05 Jun 2017
Hyperparameter Optimization: A Spectral Approach
Elad Hazan
Adam R. Klivans
Yang Yuan
27
118
0
02 Jun 2017
Deep Learning: A Bayesian Perspective
Nicholas G. Polson
Vadim Sokolov
BDL
38
115
0
01 Jun 2017
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
G. L. Guimaraes
Benjamín Sánchez-Lengeling
Carlos Outeiral
Pedro Luis Cunha Farias
Alán Aspuru-Guzik
GAN
34
519
0
30 May 2017
Accelerating Neural Architecture Search using Performance Prediction
Bowen Baker
O. Gupta
Ramesh Raskar
Nikhil Naik
15
30
0
30 May 2017
Asynchronous Parallel Bayesian Optimisation via Thompson Sampling
Kirthevasan Kandasamy
A. Krishnamurthy
J. Schneider
Barnabás Póczós
11
29
0
25 May 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
48
415
0
24 May 2017
An effective algorithm for hyperparameter optimization of neural networks
G. I. Diaz
Achille Fokoue
G. Nannicini
Horst Samulowitz
26
156
0
23 May 2017
A novel algorithmic approach to Bayesian Logic Regression
A. Hubin
G. Storvik
F. Frommlet
28
16
0
22 May 2017
Structural Compression of Convolutional Neural Networks
R. Abbasi-Asl
Bin-Xia Yu
33
16
0
20 May 2017
Adaptive Rate of Convergence of Thompson Sampling for Gaussian Process Optimization
Kinjal Basu
Souvik Ghosh
13
42
0
18 May 2017
Pitfalls and Best Practices in Algorithm Configuration
Katharina Eggensperger
Marius Lindauer
Frank Hutter
32
62
0
17 May 2017
Text-based Adventures of the Golovin AI Agent
Bartosz Kostka
Jaroslaw Kwiecieli
Jakub Kowalski
Paweł Rychlikowski
AI4CE
9
31
0
16 May 2017
Probabilistic Matrix Factorization for Automated Machine Learning
Nicolò Fusi
Rishit Sheth
Melih Elibol
18
134
0
15 May 2017
Practical Bayesian Optimization for Model Fitting with Bayesian Adaptive Direct Search
Luigi Acerbi
Wei Ji
16
218
0
11 May 2017
A Feature Embedding Strategy for High-level CNN representations from Multiple ConvNets
Akilan Thangarajah
Q. M. J. Wu
Wei Jiang
21
4
0
11 May 2017
Residual Squeeze VGG16
Hussam Qassim
David Feinzimer
Abhishek Verma
VLM
14
21
0
05 May 2017
DeepArchitect: Automatically Designing and Training Deep Architectures
Renato M. P. Negrinho
Geoffrey J. Gordon
25
185
0
28 Apr 2017
Exploiting random projections and sparsity with random forests and gradient boosting methods -- Application to multi-label and multi-output learning, random forest model compression and leveraging input sparsity
Arnaud Joly
30
10
0
26 Apr 2017
Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks
Cem M. Deniz
Siyuan Xiang
S. Hallyburton
A. Welbeck
James S. Babb
S. Honig
Kyunghyun Cho
G. Chang
23
147
0
20 Apr 2017
Differential Evolution and Bayesian Optimisation for Hyper-Parameter Selection in Mixed-Signal Neuromorphic Circuits Applied to UAV Obstacle Avoidance
Llewyn Salt
David Howard
Giacomo Indiveri
Yulia Sandamirskaya
11
4
0
17 Apr 2017
Preferential Bayesian Optimization
Javier I. González
Zhenwen Dai
Andreas C. Damianou
Neil D. Lawrence
15
110
0
12 Apr 2017
Correcting boundary over-exploration deficiencies in Bayesian optimization with virtual derivative sign observations
E. Siivola
Aki Vehtari
J. Vanhatalo
Javier I. González
Michael Riis Andersen
11
25
0
04 Apr 2017
A Genetic Programming Approach to Designing Convolutional Neural Network Architectures
Masanori Suganuma
Shinichi Shirakawa
T. Nagao
22
587
0
03 Apr 2017
Efficient acquisition rules for model-based approximate Bayesian computation
Marko Jarvenpaa
Michael U. Gutmann
Arijus Pleska
Aki Vehtari
Pekka Marttinen
TPM
27
69
0
03 Apr 2017
Exploiting gradients and Hessians in Bayesian optimization and Bayesian quadrature
Anqi Wu
Mikio C. Aoi
Jonathan W. Pillow
17
41
0
31 Mar 2017
Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates
Katharina Eggensperger
Marius Lindauer
Holger H. Hoos
Frank Hutter
Kevin Leyton-Brown
17
7
0
30 Mar 2017
Previous
1
2
3
...
39
40
41
...
43
44
45
Next