ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.03004
14
21

Residual Squeeze VGG16

5 May 2017
Hussam Qassim
David Feinzimer
Abhishek Verma
    VLM
ArXivPDFHTML
Abstract

Deep learning has given way to a new era of machine learning, apart from computer vision. Convolutional neural networks have been implemented in image classification, segmentation and object detection. Despite recent advancements, we are still in the very early stages and have yet to settle on best practices for network architecture in terms of deep design, small in size and a short training time. In this work, we propose a very deep neural network comprised of 16 Convolutional layers compressed with the Fire Module adapted from the SQUEEZENET model. We also call for the addition of residual connections to help suppress degradation. This model can be implemented on almost every neural network model with fully incorporated residual learning. This proposed model Residual-Squeeze-VGG16 (ResSquVGG16) trained on the large-scale MIT Places365-Standard scene dataset. In our tests, the model performed with accuracy similar to the pre-trained VGG16 model in Top-1 and Top-5 validation accuracy while also enjoying a 23.86% reduction in training time and an 88.4% reduction in size. In our tests, this model was trained from scratch.

View on arXiv
Comments on this paper