ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.09236
11
29

Asynchronous Parallel Bayesian Optimisation via Thompson Sampling

25 May 2017
Kirthevasan Kandasamy
A. Krishnamurthy
J. Schneider
Barnabás Póczós
ArXivPDFHTML
Abstract

We design and analyse variations of the classical Thompson sampling (TS) procedure for Bayesian optimisation (BO) in settings where function evaluations are expensive, but can be performed in parallel. Our theoretical analysis shows that a direct application of the sequential Thompson sampling algorithm in either synchronous or asynchronous parallel settings yields a surprisingly powerful result: making nnn evaluations distributed among MMM workers is essentially equivalent to performing nnn evaluations in sequence. Further, by modeling the time taken to complete a function evaluation, we show that, under a time constraint, asynchronously parallel TS achieves asymptotically lower regret than both the synchronous and sequential versions. These results are complemented by an experimental analysis, showing that asynchronous TS outperforms a suite of existing parallel BO algorithms in simulations and in a hyper-parameter tuning application in convolutional neural networks. In addition to these, the proposed procedure is conceptually and computationally much simpler than existing work for parallel BO.

View on arXiv
Comments on this paper