Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1203.3887
Cited By
v1
v2
v3
v4 (latest)
Learning loopy graphical models with latent variables: Efficient methods and guarantees
17 March 2012
Anima Anandkumar
R. Valluvan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning loopy graphical models with latent variables: Efficient methods and guarantees"
27 / 27 papers shown
Title
Learning the Influence Graph of a High-Dimensional Markov Process with Memory
Smita Bagewadi
Avhishek Chatterjee
CML
57
0
0
13 Jun 2024
Optimal estimation of Gaussian (poly)trees
Yuhao Wang
Ming Gao
Wai Ming Tai
Bryon Aragam
Arnab Bhattacharyya
TPM
73
1
0
09 Feb 2024
Learning the Causal Structure of Networked Dynamical Systems under Latent Nodes and Structured Noise
Augusto Santos
Diogo Rente
Rui Seabra
José M. F. Moura
101
4
0
10 Dec 2023
A Unified Approach to Learning Ising Models: Beyond Independence and Bounded Width
Jason Gaitonde
Elchanan Mossel
81
8
0
15 Nov 2023
Robust Model Selection of Gaussian Graphical Models
Abrar Zahin
Rajasekhar Anguluri
Lalitha Sankar
O. Kosut
Gautam Dasarathy
69
0
0
10 Nov 2022
Recovering the Graph Underlying Networked Dynamical Systems under Partial Observability: A Deep Learning Approach
Sérgio Machado
Anirudh Sridhar
P. Gil
J. Henriques
J. M. F. Moura
A. Santos
CML
60
2
0
08 Aug 2022
Learning latent causal graphs via mixture oracles
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
CML
84
48
0
29 Jun 2021
Learning to Sample from Censored Markov Random Fields
Ankur Moitra
Elchanan Mossel
Colin Sandon
93
8
0
15 Jan 2021
Learning Restricted Boltzmann Machines with Sparse Latent Variables
Guy Bresler
Rares-Darius Buhai
44
2
0
07 Jun 2020
Graph Learning Under Partial Observability
Vincenzo Matta
A. Santos
Ali H. Sayed
135
0
0
18 Dec 2019
Topology Inference over Networks with Nonlinear Coupling
A. Santos
Vincenzo Matta
Ali H. Sayed
122
0
0
21 Jun 2019
Learning Restricted Boltzmann Machines with Arbitrary External Fields
Surbhi Goel
82
3
0
15 Jun 2019
Graph Learning over Partially Observed Diffusion Networks: Role of Degree Concentration
Vincenzo Matta
A. Santos
Ali H. Sayed
149
2
0
05 Apr 2019
Predictive Learning on Hidden Tree-Structured Ising Models
Konstantinos E. Nikolakakis
Dionysios S. Kalogerias
Anand D. Sarwate
76
12
0
11 Dec 2018
Learning Restricted Boltzmann Machines via Influence Maximization
Guy Bresler
Frederic Koehler
Ankur Moitra
Elchanan Mossel
AI4CE
76
29
0
25 May 2018
Local Tomography of Large Networks under the Low-Observability Regime
A. Santos
Vincenzo Matta
Ali H. Sayed
65
27
0
23 May 2018
Information Theoretic Structure Learning with Confidence
Kevin R. Moon
M. Noshad
Salimeh Yasaei Sekeh
Alfred Hero
45
18
0
13 Sep 2016
Discovery of Latent Factors in High-dimensional Data Using Tensor Methods
Furong Huang
64
6
0
10 Jun 2016
Structure Learning in Graphical Modeling
Mathias Drton
Marloes H. Maathuis
CML
112
253
0
07 Jun 2016
Learning a Tree-Structured Ising Model in Order to Make Predictions
Guy Bresler
Mina Karzand
104
46
0
22 Apr 2016
Graphical Fermat's Principle and Triangle-Free Graph Estimation
Junwei Lu
Han Liu
120
0
0
23 Apr 2015
A Hash-based Co-Clustering Algorithm for Categorical Data
F. O. França
72
22
0
29 Jul 2014
Guaranteed Scalable Learning of Latent Tree Models
Furong Huang
U. Niranjan
Ioakeim Perros
Robert Chen
Jimeng Sun
Anima Anandkumar
153
7
0
18 Jun 2014
Nonparametric Latent Tree Graphical Models: Inference, Estimation, and Structure Learning
Le Song
Han Liu
Ankur P. Parikh
Eric Xing
160
12
0
16 Jan 2014
Learning Topic Models and Latent Bayesian Networks Under Expansion Constraints
Anima Anandkumar
Daniel J. Hsu
Adel Javanmard
Sham Kakade
208
8
0
24 Sep 2012
Learning High-Dimensional Mixtures of Graphical Models
Anima Anandkumar
Daniel J. Hsu
F. Huang
Sham Kakade
101
10
0
04 Mar 2012
Robust estimation of latent tree graphical models: Inferring hidden states with inexact parameters
Elchanan Mossel
S. Roch
Allan Sly
156
19
0
21 Sep 2011
1