We study the problem of learning graphical models with latent variables. We give the first algorithm for learning locally consistent (ferromagnetic or antiferromagnetic) Restricted Boltzmann Machines (or RBMs) with {\em arbitrary} external fields. Our algorithm has optimal dependence on dimension in the sample complexity and run time however it suffers from a sub-optimal dependency on the underlying parameters of the RBM. Prior results have been established only for {\em ferromagnetic} RBMs with {\em consistent} external fields (signs must be same)\cite{bresler2018learning}. The proposed algorithm strongly relies on the concavity of magnetization which does not hold in our setting. We show the following key structural property: even in the presence of arbitrary external field, for any two observed nodes that share a common latent neighbor, the covariance is high. This enables us to design a simple greedy algorithm that maximizes covariance to iteratively build the neighborhood of each vertex.
View on arXiv