Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1101.3501
Cited By
Convergence rates of efficient global optimization algorithms
18 January 2011
Adam D. Bull
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence rates of efficient global optimization algorithms"
50 / 91 papers shown
Title
Wasserstein Barycenter Gaussian Process based Bayesian Optimization
Antonio Candelieri
Andrea Ponti
Francesco Archetti
22
0
0
18 May 2025
Convergence Rates of Constrained Expected Improvement
Haowei Wang
Jingyi Wang
Zhongxiang Dai
Nai-Yuan Chiang
Szu Hui Ng
Cosmin G. Petra
27
0
0
16 May 2025
Bayesian Optimization by Kernel Regression and Density-based Exploration
Tansheng Zhu
Hongyu Zhou
Ke Jin
Xusheng Xu
Qiufan Yuan
Lijie Ji
248
0
0
10 Feb 2025
Improved Regret Analysis in Gaussian Process Bandits: Optimality for Noiseless Reward, RKHS norm, and Non-Stationary Variance
S. Iwazaki
Shion Takeno
85
1
0
10 Feb 2025
Every Call is Precious: Global Optimization of Black-Box Functions with Unknown Lipschitz Constants
Fares Fourati
Salma Kharrat
Vaneet Aggarwal
Mohamed-Slim Alouini
73
0
0
06 Feb 2025
Co-Learning Bayesian Optimization
Zhendong Guo
Yew-Soon Ong
Tiantian He
Haitao Liu
108
2
0
23 Jan 2025
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
114
2
0
29 Oct 2024
Lower Bounds for Time-Varying Kernelized Bandits
Xu Cai
Jonathan Scarlett
41
0
0
22 Oct 2024
Bayesian Optimization for Non-Convex Two-Stage Stochastic Optimization Problems
Jack M. Buckingham
Ivo Couckuyt
Juergen Branke
51
0
0
30 Aug 2024
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
41
0
0
16 Jul 2024
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
Jacob O. Tørring
Carl Hvarfner
Luigi Nardi
Magnus Sjalander
65
0
0
24 Jun 2024
Finding safe 3D robot grasps through efficient haptic exploration with unscented Bayesian optimization and collision penalty
João Castanheira
Pedro Vicente
Ruben Martinez-Cantin
L. Jamone
Alexandre Bernardino
29
11
0
10 Feb 2024
On the development of a practical Bayesian optimisation algorithm for expensive experiments and simulations with changing environmental conditions
Mike Diessner
Kevin J. Wilson
Richard D. Whalley
34
0
0
05 Feb 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
41
17
0
03 Feb 2024
A Unified Gaussian Process for Branching and Nested Hyperparameter Optimization
Jiazhao Zhang
Ying Hung
Chung-Ching Lin
Zicheng Liu
23
0
0
19 Jan 2024
LABCAT: Locally adaptive Bayesian optimization using principal-component-aligned trust regions
E. Visser
C. E. V. Daalen
J. C. Schoeman
50
0
0
19 Nov 2023
Accelerating material discovery with a threshold-driven hybrid acquisition policy-based Bayesian optimization
Ahmed Shoyeb Raihan
H. Khosravi
Srinjoy Das
Imtiaz Ahmed
39
3
0
16 Nov 2023
Pseudo-Bayesian Optimization
Haoxian Chen
Henry Lam
37
2
0
15 Oct 2023
Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian Regret Bounds
Shion Takeno
Yu Inatsu
Masayuki Karasuyama
35
13
0
03 Feb 2023
Bayesian Optimization of 2D Echocardiography Segmentation
Tung Tran
Joshua V. Stough
Xiaoyan Zhang
C. Haggerty
26
3
0
17 Nov 2022
Global Optimization with Parametric Function Approximation
Chong Liu
Yu Wang
41
7
0
16 Nov 2022
Optimization on Manifolds via Graph Gaussian Processes
Hwanwoo Kim
D. Sanz-Alonso
Ruiyi Yang
48
2
0
20 Oct 2022
Accelerating the Evolutionary Algorithms by Gaussian Process Regression with
ε
ε
ε
-greedy acquisition function
Rui Zhong
En-zhan Zhang
M. Munetomo
23
0
0
13 Oct 2022
Batch Bayesian optimisation via density-ratio estimation with guarantees
Rafael Oliveira
Louis C. Tiao
Fabio Ramos
49
7
0
22 Sep 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
29
3
0
04 Aug 2022
Learning Skill-based Industrial Robot Tasks with User Priors
Matthias Mayr
Carl Hvarfner
Konstantinos Chatzilygeroudis
Luigi Nardi
Volker Krueger
43
21
0
02 Aug 2022
Joint Entropy Search for Maximally-Informed Bayesian Optimization
Carl Hvarfner
Frank Hutter
Luigi Nardi
46
36
0
09 Jun 2022
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
S. Petit
Julien Bect
E. Vázquez
51
1
0
07 Jun 2022
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
33
4
0
10 May 2022
High Dimensional Bayesian Optimization with Kernel Principal Component Analysis
Kirill Antonov
Elena Raponi
Hao Wang
Carola Doerr
27
10
0
28 Apr 2022
An Algebraically Converging Stochastic Gradient Descent Algorithm for Global Optimization
Bjorn Engquist
Kui Ren
Yunan Yang
21
6
0
12 Apr 2022
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
32
1
0
10 Mar 2022
Bayesian Optimization Meets Hybrid Zero Dynamics: Safe Parameter Learning for Bipedal Locomotion Control
Lizhi Yang
Zhongyu Li
Jun Zeng
Koushil Sreenath
29
13
0
04 Mar 2022
Bayesian Optimization of Function Networks
Raul Astudillo
P. Frazier
32
36
0
31 Dec 2021
Triangulation candidates for Bayesian optimization
R. Gramacy
Anna Sauer
Nathan Wycoff
34
13
0
14 Dec 2021
Towards Futuristic Autonomous Experimentation--A Surprise-Reacting Sequential Experiment Policy
Imtiaz Ahmed
Satish Bukkapatnam
Bhaskar Botcha
Yucheng Ding
43
5
0
01 Dec 2021
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
25
13
0
15 Sep 2021
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for Safety-Critical Applications
A. Capone
Armin Lederer
Sandra Hirche
32
18
0
06 Sep 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
39
51
0
20 Aug 2021
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
24
26
0
29 Jun 2021
Lookahead Acquisition Functions for Finite-Horizon Time-Dependent Bayesian Optimization and Application to Quantum Optimal Control
Sudharshan Ashwin Renganathan
Jeffrey Larson
Stefan M. Wild
23
7
0
20 May 2021
Bayesian Optimistic Optimisation with Exponentially Decaying Regret
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
24
3
0
10 May 2021
One-parameter family of acquisition functions for efficient global optimization
T. Kanazawa
35
2
0
26 Apr 2021
FixNorm: Dissecting Weight Decay for Training Deep Neural Networks
Yucong Zhou
Yunxiao Sun
Zhaobai Zhong
29
6
0
29 Mar 2021
Small Sample Spaces for Gaussian Processes
Toni Karvonen
24
13
0
04 Mar 2021
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
212
81
0
16 Feb 2021
Bayesian optimization with improved scalability and derivative information for efficient design of nanophotonic structures
Xavier Garcia Santiago
Sven Burger
C. Rockstuhl
Philipp‐Immanuel Schneider
20
12
0
08 Jan 2021
Asynchronous ε-Greedy Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
35
5
0
15 Oct 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
38
82
0
15 Jun 2020
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
42
39
0
29 Jan 2020
1
2
Next