Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1012.2599
Cited By
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
12 December 2010
E. Brochu
Vlad M. Cora
Nando de Freitas
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning"
50 / 691 papers shown
Title
Bayesian Active Learning for Structured Output Design
Kota Matsui
Shunya Kusakawa
Keisuke Ando
Kentaro Kutsukake
T. Ujihara
Ichiro Takeuchi
21
6
0
09 Nov 2019
A Programmable Approach to Neural Network Compression
Vinu Joseph
Saurav Muralidharan
Animesh Garg
M. Garland
Ganesh Gopalakrishnan
66
10
0
06 Nov 2019
Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
69
29
0
23 Oct 2019
Dynamic Subgoal-based Exploration via Bayesian Optimization
Yijia Wang
Matthias Poloczek
Daniel R. Jiang
78
3
0
21 Oct 2019
Parameter Optimization and Learning in a Spiking Neural Network for UAV Obstacle Avoidance targeting Neuromorphic Processors
Llewyn Salt
David Howard
Giacomo Indiveri
Yulia Sandamirskaya
42
46
0
17 Oct 2019
Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
31
23
0
17 Oct 2019
Batch simulations and uncertainty quantification in Gaussian process surrogate approximate Bayesian computation
Marko Jarvenpaa
Aki Vehtari
Pekka Marttinen
70
15
0
14 Oct 2019
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
BDL
UQCV
53
8
0
13 Oct 2019
Bayesian Optimization using Pseudo-Points
Chao Qian
Hang Xiong
Ke Xue
62
15
0
12 Oct 2019
Evolving Gaussian Process kernels from elementary mathematical expressions
Ibai Roman
Roberto Santana
A. Mendiburu
Jose A. Lozano
44
3
0
11 Oct 2019
Attacking Vision-based Perception in End-to-End Autonomous Driving Models
Adith Boloor
Karthik Garimella
Xin He
C. Gill
Yevgeniy Vorobeychik
Xuan Zhang
AAML
80
108
0
02 Oct 2019
Active preference learning based on radial basis functions
Alberto Bemporad
Dario Piga
61
9
0
28 Sep 2019
Bayesian Optimization for Iterative Learning
Vu-Linh Nguyen
Sebastian Schulze
Michael A. Osborne
BDL
114
33
0
20 Sep 2019
Efficient Transfer Bayesian Optimization with Auxiliary Information
Tomoharu Iwata
Takuma Otsuka
71
2
0
17 Sep 2019
Bayesian Optimization under Heavy-tailed Payoffs
Sayak Ray Chowdhury
Aditya Gopalan
65
27
0
16 Sep 2019
Surrogate-based Optimization using Mutual Information for Computer Experiments (optim-MICE)
Theodoros Mathikolonis
S. Guillas
47
3
0
10 Sep 2019
Cost-aware Multi-objective Bayesian optimisation
Majid Abdolshah
A. Shilton
Santu Rana
Sunil R. Gupta
Svetha Venkatesh
56
18
0
09 Sep 2019
Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters
Marius Lindauer
Matthias Feurer
Katharina Eggensperger
André Biedenkapp
Frank Hutter
129
18
0
19 Aug 2019
ConfigTron: Tackling network diversity with heterogeneous configurations
Usama Naseer
Theophilus A. Benson
26
13
0
13 Aug 2019
Automatic Calibration of Dynamic and Heterogeneous Parameters in Agent-based Model
Dongjun Kim
Tae-Sub Yun
Il-Chul Moon
13
3
0
09 Aug 2019
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
Sailun Xu
Kirthevasan Kandasamy
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
123
123
0
05 Aug 2019
No-PASt-BO: Normalized Portfolio Allocation Strategy for Bayesian Optimization
Thiago de P. Vasconcelos
Daniel Augusto R. M. A. de Souza
C. L. C. Mattos
Joao P. P. Gomes
46
12
0
01 Aug 2019
pySOT and POAP: An event-driven asynchronous framework for surrogate optimization
David Eriksson
D. Bindel
C. Shoemaker
75
57
0
30 Jul 2019
Adaptive Compression-based Lifelong Learning
Shivangi Srivastava
Maxim Berman
Matthew B. Blaschko
D. Tuia
CLL
77
10
0
23 Jul 2019
Accelerating Experimental Design by Incorporating Experimenter Hunches
Cheng Li
Santu Rana
Sunil R. Gupta
Vu Nguyen
Svetha Venkatesh
...
David Rubín de Celis Leal
Teo Slezak
Murray Height
M. Mohammed
I. Gibson
75
33
0
22 Jul 2019
Automated Machine Learning in Practice: State of the Art and Recent Results
Lukas Tuggener
Mohammadreza Amirian
Katharina Rombach
Stefan Lörwald
Anastasia Varlet
Christian Westermann
Thilo Stadelmann
46
65
0
19 Jul 2019
Meta-Learning for Black-box Optimization
T. Vishnu
Pankaj Malhotra
Jyoti Narwariya
Lovekesh Vig
Gautam M. Shroff
62
19
0
16 Jul 2019
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning
Mohammad Hasan Yeganegi
Majid Khadiv
S. A. A. Moosavian
Jia Jie Zhu
Andrea Del Prete
Ludovic Righetti
134
15
0
10 Jul 2019
Adaptive Pricing in Insurance: Generalized Linear Models and Gaussian Process Regression Approaches
Yuqing Zhang
N. Walton
28
3
0
02 Jul 2019
Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model Personalization
Jwala Dhamala
S. Ghimire
J. Sapp
B. Horácek
Linwei Wang
MedIm
68
12
0
01 Jul 2019
Learning to Generate Synthetic 3D Training Data through Hybrid Gradient
Dawei Yang
Jia Deng
3DH
62
5
0
29 Jun 2019
Multi-objective multi-generation Gaussian process optimizer for design optimization
Xiaobiao Huang
Minghao Song
Zhe Zhang
23
15
0
29 Jun 2019
Bayesian Optimization with Directionally Constrained Search
Yongqian Li
Yaqiang Yao
17
3
0
22 Jun 2019
Leveraging Reinforcement Learning Techniques for Effective Policy Adoption and Validation
Nikki Lijing Kuang
C. Leung
OffRL
18
2
0
21 Jun 2019
Bayesian Optimisation over Multiple Continuous and Categorical Inputs
Binxin Ru
A. Alvi
Vu Nguyen
Michael A. Osborne
Stephen J. Roberts
128
97
0
20 Jun 2019
Global optimization via inverse distance weighting and radial basis functions
Alberto Bemporad
70
63
0
15 Jun 2019
Region of Attraction for Power Systems using Gaussian Process and Converse Lyapunov Function -- Part I: Theoretical Framework and Off-line Study
Chao Zhai
H. Nguyen
31
10
0
09 Jun 2019
Bayesian Optimization of Composite Functions
Raul Astudillo
P. Frazier
LLMAG
81
78
0
04 Jun 2019
MEMe: An Accurate Maximum Entropy Method for Efficient Approximations in Large-Scale Machine Learning
Diego Granziol
Binxin Ru
S. Zohren
Xiaowen Dong
Michael A. Osborne
Stephen J. Roberts
55
20
0
03 Jun 2019
Characterizing Bias in Classifiers using Generative Models
Daniel J. McDuff
Shuang Ma
Yale Song
Ashish Kapoor
92
47
0
30 May 2019
Learning to Optimize Computational Resources: Frugal Training with Generalization Guarantees
Maria-Florina Balcan
Tuomas Sandholm
Ellen Vitercik
70
16
0
26 May 2019
Bayesian Optimization with Approximate Set Kernels
Jungtaek Kim
M. McCourt
Tackgeun You
Saehoon Kim
Seungjin Choi
80
8
0
23 May 2019
Practical Bayesian Optimization with Threshold-Guided Marginal Likelihood Maximization
Jungtaek Kim
Seungjin Choi
18
0
0
18 May 2019
Reinforcement Learning for Robotics and Control with Active Uncertainty Reduction
Narendra Patwardhan
Zequn Wang
24
1
0
15 May 2019
Automatic Model Selection for Neural Networks
David Laredo
Yulin Qin
O. Schütze
Jianqiao Sun
BDL
54
16
0
15 May 2019
Knowing The What But Not The Where in Bayesian Optimization
Vu Nguyen
Michael A. Osborne
108
38
0
07 May 2019
Bayesian Optimization for Multi-objective Optimization and Multi-point Search
Takashige Wada
H. Hino
75
20
0
07 May 2019
Lynceus: Cost-efficient Tuning and Provisioning of Data Analytic Jobs
Maria Casimiro
Diego Didona
Paolo Romano
L. Rodrigues
Willy Zwanepoel
David Garlan
48
21
0
06 May 2019
Interpretability with Accurate Small Models
Abhishek Ghose
Balaraman Ravindran
124
1
0
04 May 2019
Parallel Gaussian process surrogate Bayesian inference with noisy likelihood evaluations
Marko Jarvenpaa
Michael U. Gutmann
Aki Vehtari
Pekka Marttinen
118
41
0
03 May 2019
Previous
1
2
3
...
8
9
10
...
12
13
14
Next