ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.10614
14
0

Understanding an Acquisition Function Family for Bayesian Optimization

16 October 2023
Jiajie Kong
Tony Pourmohamad
Herbert K. H. Lee
ArXivPDFHTML
Abstract

Bayesian optimization (BO) developed as an approach for the efficient optimization of expensive black-box functions without gradient information. A typical BO paper introduces a new approach and compares it to some alternatives on simulated and possibly real examples to show its efficacy. Yet on a different example, this new algorithm might not be as effective as the alternatives. This paper looks at a broader family of approaches to explain the strengths and weaknesses of algorithms in the family, with guidance on what choices might work best on different classes of problems.

View on arXiv
Comments on this paper