Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0906.2220
Cited By
Rank-Sparsity Incoherence for Matrix Decomposition
11 June 2009
V. Chandrasekaran
Sujay Sanghavi
P. Parrilo
A. Willsky
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Rank-Sparsity Incoherence for Matrix Decomposition"
50 / 276 papers shown
Title
AltGDmin: Alternating GD and Minimization for Partly-Decoupled (Federated) Optimization
Namrata Vaswani
44
0
0
20 Apr 2025
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
47
36
0
13 Apr 2025
Alternating minimization for square root principal component pursuit
Shengxiang Deng
Xudong Li
Yangjing Zhang
42
0
0
31 Dec 2024
ℓ
0
\ell_0
ℓ
0
factor analysis
Linyang Wang
Wanquan Liu
Bin Zhu
27
2
0
13 Nov 2024
Tailed Low-Rank Matrix Factorization for Similarity Matrix Completion
Changyi Ma
Runsheng Yu
Xiao Chen
Youzhi Zhang
26
0
0
29 Sep 2024
OATS: Outlier-Aware Pruning Through Sparse and Low Rank Decomposition
Stephen Zhang
Vardan Papyan
VLM
51
1
0
20 Sep 2024
Attention Incorporated Network for Sharing Low-rank, Image and K-space Information during MR Image Reconstruction to Achieve Single Breath-hold Cardiac Cine Imaging
Siying Xu
Kerstin Hammernik
Andreas Lingg
Jens Kuebler
Patrick Krumm
Daniel Rueckert
S. Gatidis
T. Kuestner
31
1
0
03 Jul 2024
SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining
Andi Han
Jiaxiang Li
Wei Huang
Mingyi Hong
Akiko Takeda
Pratik Jawanpuria
Bamdev Mishra
46
10
0
04 Jun 2024
Extremal graphical modeling with latent variables via convex optimization
Sebastian Engelke
Armeen Taeb
31
2
0
14 Mar 2024
Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference
Harry Dong
Xinyu Yang
Zhenyu Zhang
Zhangyang Wang
Yuejie Chi
Beidi Chen
35
49
0
14 Feb 2024
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables
Xinshuai Dong
Erdun Gao
Ignavier Ng
Xiangchen Song
Yujia Zheng
Songyao Jin
Roberto Legaspi
Peter Spirtes
Kun Zhang
BDL
CML
30
10
0
18 Dec 2023
Learning Dynamics in Linear VAE: Posterior Collapse Threshold, Superfluous Latent Space Pitfalls, and Speedup with KL Annealing
Yuma Ichikawa
Koji Hukushima
26
5
0
24 Oct 2023
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Byzantine-Resilient Federated PCA and Low Rank Column-wise Sensing
Ankit Pratap Singh
Namrata Vaswani
32
0
0
25 Sep 2023
Generalized Independent Noise Condition for Estimating Causal Structure with Latent Variables
Feng Xie
Erdun Gao
Zhen Chen
Ruichu Cai
Clark Glymour
Zhi Geng
Kun Zhang
CML
31
5
0
13 Aug 2023
Causality-oriented robustness: exploiting general noise interventions
Xinwei Shen
Peter Buhlmann
Armeen Taeb
OOD
67
8
0
18 Jul 2023
Identification of Nonlinear Latent Hierarchical Models
Lingjing Kong
Erdun Gao
Feng Xie
Eric Xing
Yuejie Chi
Kun Zhang
CML
32
19
0
13 Jun 2023
Active-Learning-Driven Surrogate Modeling for Efficient Simulation of Parametric Nonlinear Systems
Harshit Kapadia
Lihong Feng
P. Benner
15
9
0
09 Jun 2023
SKI to go Faster: Accelerating Toeplitz Neural Networks via Asymmetric Kernels
Alexander Moreno
Jonathan Mei
Luke Walters
23
0
0
15 May 2023
Robust Tensor CUR Decompositions: Rapid Low-Tucker-Rank Tensor Recovery with Sparse Corruption
HanQin Cai
Zehan Chao
Longxiu Huang
Deanna Needell
37
11
0
06 May 2023
Domain Generalization via Nuclear Norm Regularization
Zhenmei Shi
Yifei Ming
Ying Fan
Frederic Sala
Yingyu Liang
30
12
0
13 Mar 2023
Robust Autoencoders for Collective Corruption Removal
Taihui Li
Hengkang Wang
Peng Le
XianE Tang
Ju Sun
OOD
18
1
0
06 Mar 2023
Can Learning Be Explained By Local Optimality In Robust Low-rank Matrix Recovery?
Jianhao Ma
S. Fattahi
36
0
0
21 Feb 2023
Multi-Rate VAE: Train Once, Get the Full Rate-Distortion Curve
Juhan Bae
Michael Ruogu Zhang
Michael Ruan
Eric Wang
S. Hasegawa
Jimmy Ba
Roger C. Grosse
DRL
29
17
0
07 Dec 2022
Latent Hierarchical Causal Structure Discovery with Rank Constraints
Erdun Gao
C. Low
Feng Xie
Clark Glymour
Kun Zhang
CML
70
40
0
01 Oct 2022
Bounded Simplex-Structured Matrix Factorization: Algorithms, Identifiability and Applications
Olivier Vu Thanh
Nicolas Gillis
Fabian Lecron
14
3
0
26 Sep 2022
Optimal Sparse Estimation of High Dimensional Heavy-tailed Time Series
Sagnik Halder
George Michailidis
AI4TS
13
0
0
19 Sep 2022
Large covariance matrix estimation via penalized log-det heuristics
E. Bernardi
M. Farné
28
0
0
11 Sep 2022
Signed Network Embedding with Application to Simultaneous Detection of Communities and Anomalies
H. Zhang
Junhui Wang
14
1
0
08 Jul 2022
Fast and Provable Tensor Robust Principal Component Analysis via Scaled Gradient Descent
Harry Dong
Tian Tong
Cong Ma
Yuejie Chi
43
12
0
18 Jun 2022
Robust Projection based Anomaly Extraction (RPE) in Univariate Time-Series
M. Rahmani
Anoop Deoras
Laurent Callot
AI4TS
31
0
0
31 May 2022
Stochastic and Private Nonconvex Outlier-Robust PCA
Tyler Maunu
Chenyun Yu
Gilad Lerman
19
3
0
17 Mar 2022
Flat minima generalize for low-rank matrix recovery
Lijun Ding
Dmitriy Drusvyatskiy
Maryam Fazel
Zaid Harchaoui
46
16
0
07 Mar 2022
Robust Estimation for Random Graphs
Jayadev Acharya
Ayush Jain
Gautam Kamath
A. Suresh
Huanyu Zhang
30
8
0
09 Nov 2021
Rethinking Point Cloud Filtering: A Non-Local Position Based Approach
Jinxi Wang
Jincen Jiang
Xuequan Lu
Meili Wang
3DPC
35
14
0
14 Oct 2021
Learned Robust PCA: A Scalable Deep Unfolding Approach for High-Dimensional Outlier Detection
HanQin Cai
Jialin Liu
W. Yin
38
39
0
11 Oct 2021
Provable Low Rank Plus Sparse Matrix Separation Via Nonconvex Regularizers
April Sagan
J. Mitchell
24
0
0
26 Sep 2021
Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach
Dimitris Bertsimas
Ryan Cory-Wright
Nicholas A. G. Johnson
22
13
0
26 Sep 2021
Active manifolds, stratifications, and convergence to local minima in nonsmooth optimization
Damek Davis
Dmitriy Drusvyatskiy
L. Jiang
33
10
0
26 Aug 2021
Distributed stochastic inertial-accelerated methods with delayed derivatives for nonconvex problems
Yangyang Xu
Yibo Xu
Yonggui Yan
Jiewei Chen
17
4
0
24 Jul 2021
Model compression as constrained optimization, with application to neural nets. Part V: combining compressions
Miguel Á. Carreira-Perpiñán
Yerlan Idelbayev
30
6
0
09 Jul 2021
Closed-Form, Provable, and Robust PCA via Leverage Statistics and Innovation Search
M. Rahmani
Ping Li
24
4
0
23 Jun 2021
Square Root Principal Component Pursuit: Tuning-Free Noisy Robust Matrix Recovery
Junhui Zhang
Jingkai Yan
John N. Wright
33
6
0
17 Jun 2021
Towards Understanding Generalization via Decomposing Excess Risk Dynamics
Jiaye Teng
Jianhao Ma
Yang Yuan
29
4
0
11 Jun 2021
Low-Rank Subspaces in GANs
Jiapeng Zhu
Ruili Feng
Yujun Shen
Deli Zhao
Zhengjun Zha
Jingren Zhou
Qifeng Chen
GAN
24
71
0
08 Jun 2021
Learning Gaussian Graphical Models with Latent Confounders
Ke Wang
Alexander M. Franks
Sang-Yun Oh
CML
32
2
0
14 May 2021
An algebraic estimator for large spectral density matrices
M. Barigozzi
M. Farné
29
7
0
05 Apr 2021
Generalized Low-rank plus Sparse Tensor Estimation by Fast Riemannian Optimization
Jian-Feng Cai
Jingyang Li
Dong Xia
49
30
0
16 Mar 2021
Robust Principal Component Analysis: A Median of Means Approach
Debolina Paul
Saptarshi Chakraborty
Swagatam Das
24
8
0
05 Feb 2021
Sign-RIP: A Robust Restricted Isometry Property for Low-rank Matrix Recovery
Jianhao Ma
S. Fattahi
18
12
0
05 Feb 2021
1
2
3
4
5
6
Next