ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.01863
29
7

An algebraic estimator for large spectral density matrices

5 April 2021
M. Barigozzi
M. Farné
ArXivPDFHTML
Abstract

We propose a new estimator of high-dimensional spectral density matrices, called UNshrunk ALgebraic Spectral Estimator (UNALSE), under the assumption of an underlying low rank plus sparse structure, as typically assumed in dynamic factor models. The UNALSE is computed by minimizing a quadratic loss under a nuclear norm plus l1l_1l1​ norm constraint to control the latent rank and the residual sparsity pattern. The loss function requires as input the classical smoothed periodogram estimator and two threshold parameters, the choice of which is thoroughly discussed. We prove consistency of UNALSE as both the dimension ppp and the sample size TTT diverge to infinity, as well as algebraic consistency, i.e., the recovery of latent rank and residual sparsity pattern with probability one. The finite sample properties of UNALSE are studied by means of an extended simulation exercise as well as an empirical analysis of US macroeconomic data.

View on arXiv
Comments on this paper