Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0811.3628
Cited By
High-dimensional covariance estimation by minimizing
ℓ
1
\ell_1
ℓ
1
-penalized log-determinant divergence
21 November 2008
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High-dimensional covariance estimation by minimizing $\ell_1$-penalized log-determinant divergence"
35 / 335 papers shown
Title
Gemini: Graph estimation with matrix variate normal instances
Shuheng Zhou
66
105
0
23 Sep 2012
High-Dimensional Covariance Decomposition into Sparse Markov and Independence Domains
Majid Janzamin
A. Anandkumar
21
3
0
27 Jun 2012
The Highest Dimensional Stochastic Blockmodel with a Regularized Estimator
Karl Rohe
Tai Qin
Haoyang Fan
66
18
0
11 Jun 2012
Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection
Shiqian Ma
Lingzhou Xue
H. Zou
47
101
0
06 Jun 2012
Estimating sufficient reductions of the predictors in abundant high-dimensional regressions
R. Cook
L. Forzani
Adam J. Rothman
59
30
0
30 May 2012
Non-negative least squares for high-dimensional linear models: consistency and sparse recovery without regularization
M. Slawski
Matthias Hein
66
185
0
04 May 2012
Convergence Properties of Kronecker Graphical Lasso Algorithms
Theodoros Tsiligkaridis
Alfred Hero
Shuheng Zhou
46
76
0
03 Apr 2012
Fast and Adaptive Sparse Precision Matrix Estimation in High Dimensions
Weidong Liu
Xi Luo
51
82
0
17 Mar 2012
Learning loopy graphical models with latent variables: Efficient methods and guarantees
Anima Anandkumar
R. Valluvan
47
50
0
17 Mar 2012
Learning High-Dimensional Mixtures of Graphical Models
Anima Anandkumar
Daniel J. Hsu
F. Huang
Sham Kakade
33
10
0
04 Mar 2012
Greedy Learning of Markov Network Structure
Praneeth Netrapalli
Siddhartha Banerjee
Sujay Sanghavi
Sanjay Shakkottai
52
56
0
08 Feb 2012
High-dimensional covariance matrix estimation with missing observations
Karim Lounici
49
182
0
12 Jan 2012
High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods
Christopher C. Johnson
A. Jalali
Pradeep Ravikumar
31
59
0
29 Dec 2011
Bayesian model choice and information criteria in sparse generalized linear models
Rina Foygel
Mathias Drton
36
62
0
23 Dec 2011
Group Symmetry and Covariance Regularization
P. Shah
V. Chandrasekaran
50
27
0
30 Nov 2011
Learning a Factor Model via Regularized PCA
Yi-Hao Kao
Benjamin Van Roy
59
18
0
26 Nov 2011
A Direct Estimation Approach to Sparse Linear Discriminant Analysis
Tony Cai
Weidong Liu
36
280
0
18 Jul 2011
High-dimensional structure estimation in Ising models: Local separation criterion
Anima Anandkumar
Vincent Y. F. Tan
Furong Huang
A. Willsky
52
114
0
08 Jul 2011
High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion
Anima Anandkumar
Vincent Y. F. Tan
A. Willsky
53
90
0
06 Jul 2011
Learning the Dependence Graph of Time Series with Latent Factors
A. Jalali
Sujay Sanghavi
CML
54
44
0
09 Jun 2011
Lattices of Graphical Gaussian Models with Symmetries
H. Gehrmann
53
12
0
08 Apr 2011
Estimating Networks With Jumps
Mladen Kolar
Eric P. Xing
67
66
0
17 Dec 2010
Extended Bayesian Information Criteria for Gaussian Graphical Models
Rina Foygel
Mathias Drton
36
853
0
30 Nov 2010
Optimal rates of convergence for covariance matrix estimation
Tommaso Cai
Cun-Hui Zhang
Harrison H. Zhou
74
472
0
19 Oct 2010
A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers
S. Negahban
Pradeep Ravikumar
Martin J. Wainwright
Bin Yu
73
1,369
0
13 Oct 2010
High-dimensional covariance estimation based on Gaussian graphical models
Shuheng Zhou
Philipp Rütimann
Min Xu
Peter Buhlmann
92
91
0
02 Sep 2010
Latent variable graphical model selection via convex optimization
V. Chandrasekaran
P. Parrilo
A. Willsky
CML
103
508
0
06 Aug 2010
Estimation of high-dimensional low-rank matrices
Angelika Rohde
Alexandre B. Tsybakov
98
378
0
29 Dec 2009
Learning Exponential Families in High-Dimensions: Strong Convexity and Sparsity
Sham Kakade
Ohad Shamir
Karthik Sindharan
Ambuj Tewari
86
76
0
31 Oct 2009
Asymptotic distribution and sparsistency for l1-penalized parametric M-estimators with applications to linear SVM and logistic regression
Guilherme V. Rocha
Xing Wang
Bin Yu
91
22
0
13 Aug 2009
Sparsistent Estimation of Time-Varying Discrete Markov Random Fields
Mladen Kolar
Eric P. Xing
99
23
0
14 Jul 2009
Information-theoretic limits of selecting binary graphical models in high dimensions
N. Santhanam
Martin J. Wainwright
71
203
0
16 May 2009
Adaptive Lasso for High Dimensional Regression and Gaussian Graphical Modeling
Shuheng Zhou
Sara van de Geer
Peter Buhlmann
87
80
0
13 Mar 2009
Estimating time-varying networks
Mladen Kolar
Le Song
Amr Ahmed
Eric P. Xing
AI4TS
83
309
0
30 Dec 2008
Time Varying Undirected Graphs
Shuheng Zhou
John D. Lafferty
Larry A. Wasserman
116
240
0
20 Feb 2008
Previous
1
2
3
4
5
6
7