ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0811.3628
  4. Cited By
High-dimensional covariance estimation by minimizing $\ell_1$-penalized
  log-determinant divergence

High-dimensional covariance estimation by minimizing ℓ1\ell_1ℓ1​-penalized log-determinant divergence

21 November 2008
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
ArXivPDFHTML

Papers citing "High-dimensional covariance estimation by minimizing $\ell_1$-penalized log-determinant divergence"

50 / 335 papers shown
Title
Sparse and compositionally robust inference of microbial ecological
  networks
Sparse and compositionally robust inference of microbial ecological networks
Zachary D. Kurtz
Christian L. Müller
Emily R. Miraldi
D. Littman
M. Blaser
Richard Bonneau
34
1,224
0
18 Aug 2014
Sure Screening for Gaussian Graphical Models
Sure Screening for Gaussian Graphical Models
Shuang Luo
R. Song
Daniela Witten
29
22
0
29 Jul 2014
Learning Latent Variable Gaussian Graphical Models
Learning Latent Variable Gaussian Graphical Models
Zhaoshi Meng
Brian Eriksson
Alfred Hero
22
41
0
10 Jun 2014
Convex Banding of the Covariance Matrix
Convex Banding of the Covariance Matrix
Jacob Bien
F. Bunea
Luo Xiao
30
44
0
23 May 2014
On the Theoretical Guarantees for Parameter Estimation of Gaussian
  Random Field Models: A Sparse Precision Matrix Approach
On the Theoretical Guarantees for Parameter Estimation of Gaussian Random Field Models: A Sparse Precision Matrix Approach
S. Tajbakhsh
N. Aybat
E. Castillo
41
10
0
21 May 2014
High Dimensional Semiparametric Latent Graphical Model for Mixed Data
High Dimensional Semiparametric Latent Graphical Model for Mixed Data
Jianqing Fan
Han Liu
Y. Ning
H. Zou
39
120
0
29 Apr 2014
Estimation of positive definite M-matrices and structure learning for
  attractive Gaussian Markov Random fields
Estimation of positive definite M-matrices and structure learning for attractive Gaussian Markov Random fields
M. Slawski
Matthias Hein
43
104
0
26 Apr 2014
A Note on Moment Inequality for Quadratic Forms
A Note on Moment Inequality for Quadratic Forms
Xiaohui Chen
42
3
0
04 Apr 2014
Learning the Conditional Independence Structure of Stationary Time
  Series: A Multitask Learning Approach
Learning the Conditional Independence Structure of Stationary Time Series: A Multitask Learning Approach
A. Jung
37
31
0
04 Apr 2014
Worst possible sub-directions in high-dimensional models
Worst possible sub-directions in high-dimensional models
Sara van de Geer
43
11
0
27 Mar 2014
Confidence intervals for high-dimensional inverse covariance estimation
Confidence intervals for high-dimensional inverse covariance estimation
Jana Janková
Sara van de Geer
66
185
0
26 Mar 2014
Statistical Structure Learning, Towards a Robust Smart Grid
Statistical Structure Learning, Towards a Robust Smart Grid
Hanie Sedghi
E. Jonckheere
141
4
0
07 Mar 2014
Learning Graphical Models With Hubs
Learning Graphical Models With Hubs
Kean Ming Tan
Palma London
Karthika Mohan
Su-In Lee
Maryam Fazel
Daniela Witten
38
98
0
28 Feb 2014
Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse
  Optimization and Noisy Matrix Decomposition
Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Noisy Matrix Decomposition
Hanie Sedghi
Anima Anandkumar
E. Jonckheere
48
13
0
20 Feb 2014
Sparsistency and agnostic inference in sparse PCA
Sparsistency and agnostic inference in sparse PCA
Jing Lei
Vincent Q. Vu
36
54
0
27 Jan 2014
Performance Analysis of Tyler's Covariance Estimator
Performance Analysis of Tyler's Covariance Estimator
I. Soloveychik
A. Wiesel
31
22
0
27 Jan 2014
Covariance and precision matrix estimation for high-dimensional time
  series
Covariance and precision matrix estimation for high-dimensional time series
Xiaohui Chen
Mengyu Xu
Wei Biao Wu
AI4TS
70
146
0
06 Jan 2014
Concave Penalized Estimation of Sparse Gaussian Bayesian Networks
Concave Penalized Estimation of Sparse Gaussian Bayesian Networks
Bryon Aragam
Qing Zhou
CML
57
107
0
04 Jan 2014
Forward-Backward Greedy Algorithms for General Convex Smooth Functions
  over A Cardinality Constraint
Forward-Backward Greedy Algorithms for General Convex Smooth Functions over A Cardinality Constraint
Ji Liu
R. Fujimaki
Jieping Ye
38
45
0
31 Dec 2013
Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Xiao-Tong Yuan
Ping Li
Tong Zhang
44
113
0
22 Nov 2013
Learning Pairwise Graphical Models with Nonlinear Sufficient Statistics
Learning Pairwise Graphical Models with Nonlinear Sufficient Statistics
Xiao-Tong Yuan
Ping Li
Tong Zhang
38
1
0
21 Nov 2013
High-dimensional learning of linear causal networks via inverse
  covariance estimation
High-dimensional learning of linear causal networks via inverse covariance estimation
Po-Ling Loh
Peter Buhlmann
CML
59
189
0
14 Nov 2013
An Inexact Proximal Path-Following Algorithm for Constrained Convex
  Minimization
An Inexact Proximal Path-Following Algorithm for Constrained Convex Minimization
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
19
29
0
07 Nov 2013
Inverse Covariance Estimation for High-Dimensional Data in Linear Time
  and Space: Spectral Methods for Riccati and Sparse Models
Inverse Covariance Estimation for High-Dimensional Data in Linear Time and Space: Spectral Methods for Riccati and Sparse Models
Jean Honorio
Tommi Jaakkola
37
25
0
26 Sep 2013
Asymptotic normality and optimalities in estimation of large Gaussian
  graphical models
Asymptotic normality and optimalities in estimation of large Gaussian graphical models
Zhao Ren
Tingni Sun
Cun-Hui Zhang
Harrison H. Zhou
66
244
0
24 Sep 2013
Composite Self-Concordant Minimization
Composite Self-Concordant Minimization
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
41
94
0
13 Aug 2013
The Cluster Graphical Lasso for improved estimation of Gaussian
  graphical models
The Cluster Graphical Lasso for improved estimation of Gaussian graphical models
Kean Ming Tan
Daniela Witten
Ali Shojaie
70
71
0
19 Jul 2013
A Survey on Metric Learning for Feature Vectors and Structured Data
A Survey on Metric Learning for Feature Vectors and Structured Data
A. Bellet
Amaury Habrard
M. Sebban
53
680
0
28 Jun 2013
Sparse Inverse Covariance Matrix Estimation Using Quadratic
  Approximation
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation
Cho-Jui Hsieh
Mátyás A. Sustik
Inderjit S. Dhillon
Pradeep Ravikumar
26
343
0
13 Jun 2013
On model selection consistency of regularized M-estimators
On model selection consistency of regularized M-estimators
J. Lee
Yuekai Sun
Jonathan E. Taylor
42
45
0
31 May 2013
Regularity Properties for Sparse Regression
Regularity Properties for Sparse Regression
Yan Sun
Jianqing Fan
35
9
0
22 May 2013
Optimal Estimation and Rank Detection for Sparse Spiked Covariance
  Matrices
Optimal Estimation and Rank Detection for Sparse Spiked Covariance Matrices
Tony Cai
Zongming Ma
Yihong Wu
37
159
0
14 May 2013
Regularized M-estimators with nonconvexity: Statistical and algorithmic
  theory for local optima
Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima
Po-Ling Loh
Martin J. Wainwright
31
512
0
10 May 2013
A Junction Tree Framework for Undirected Graphical Model Selection
A Junction Tree Framework for Undirected Graphical Model Selection
Divyanshu Vats
Robert D. Nowak
CML
51
8
0
17 Apr 2013
Marginal Likelihoods for Distributed Parameter Estimation of Gaussian
  Graphical Models
Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models
Zhaoshi Meng
Dennis L. Wei
A. Wiesel
Alfred Hero
28
25
0
19 Mar 2013
Regularized rank-based estimation of high-dimensional nonparanormal
  graphical models
Regularized rank-based estimation of high-dimensional nonparanormal graphical models
Lingzhou Xue
H. Zou
37
263
0
13 Feb 2013
Optimal rates of convergence for sparse covariance matrix estimation
Optimal rates of convergence for sparse covariance matrix estimation
T. Cai
Harrison H. Zhou
96
245
0
13 Feb 2013
Covariance Estimation in High Dimensions via Kronecker Product
  Expansions
Covariance Estimation in High Dimensions via Kronecker Product Expansions
Theodoros Tsiligkaridis
Alfred Hero
33
110
0
12 Feb 2013
A proximal Newton framework for composite minimization: Graph learning
  without Cholesky decompositions and matrix inversions
A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
33
29
0
08 Jan 2013
Optimal classification in sparse Gaussian graphic model
Optimal classification in sparse Gaussian graphic model
Yingying Fan
Jiashun Jin
Zhigang Yao
36
38
0
21 Dec 2012
Structure estimation for discrete graphical models: Generalized
  covariance matrices and their inverses
Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses
Po-Ling Loh
Martin J. Wainwright
37
180
0
03 Dec 2012
High-Dimensional Covariance Decomposition into Sparse Markov and
  Independence Models
High-Dimensional Covariance Decomposition into Sparse Markov and Independence Models
Majid Janzamin
Anima Anandkumar
33
12
0
05 Nov 2012
Discussion: Latent variable graphical model selection via convex
  optimization
Discussion: Latent variable graphical model selection via convex optimization
Emmanuel J. Candés
Mahdi Soltanolkotabi
44
39
0
05 Nov 2012
Discussion: Latent variable graphical model selection via convex
  optimization
Discussion: Latent variable graphical model selection via convex optimization
Zhao Ren
Harrison H. Zhou
30
3
0
05 Nov 2012
Discussion: Latent variable graphical model selection via convex
  optimization
Discussion: Latent variable graphical model selection via convex optimization
Christophe Giraud
Alexandre B. Tsybakov
28
8
0
05 Nov 2012
Discussion: Latent variable graphical model selection via convex
  optimization
Discussion: Latent variable graphical model selection via convex optimization
Martin J. Wainwright
40
8
0
05 Nov 2012
Adaptive covariance matrix estimation through block thresholding
Adaptive covariance matrix estimation through block thresholding
By T. Tony Cai
M. Yuan
32
129
0
02 Nov 2012
Parallel MCMC with Generalized Elliptical Slice Sampling
Parallel MCMC with Generalized Elliptical Slice Sampling
Robert Nishihara
Iain Murray
Ryan P. Adams
62
79
0
28 Oct 2012
Strong oracle optimality of folded concave penalized estimation
Strong oracle optimality of folded concave penalized estimation
Jianqing Fan
Lingzhou Xue
H. Zou
54
302
0
22 Oct 2012
Partial Gaussian Graphical Model Estimation
Partial Gaussian Graphical Model Estimation
Xiao-Tong Yuan
Tong Zhang
47
42
0
28 Sep 2012
Previous
1234567
Next