Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0811.3628
Cited By
High-dimensional covariance estimation by minimizing
ℓ
1
\ell_1
ℓ
1
-penalized log-determinant divergence
21 November 2008
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High-dimensional covariance estimation by minimizing $\ell_1$-penalized log-determinant divergence"
50 / 335 papers shown
Title
Sparse and compositionally robust inference of microbial ecological networks
Zachary D. Kurtz
Christian L. Müller
Emily R. Miraldi
D. Littman
M. Blaser
Richard Bonneau
34
1,224
0
18 Aug 2014
Sure Screening for Gaussian Graphical Models
Shuang Luo
R. Song
Daniela Witten
29
22
0
29 Jul 2014
Learning Latent Variable Gaussian Graphical Models
Zhaoshi Meng
Brian Eriksson
Alfred Hero
22
41
0
10 Jun 2014
Convex Banding of the Covariance Matrix
Jacob Bien
F. Bunea
Luo Xiao
30
44
0
23 May 2014
On the Theoretical Guarantees for Parameter Estimation of Gaussian Random Field Models: A Sparse Precision Matrix Approach
S. Tajbakhsh
N. Aybat
E. Castillo
41
10
0
21 May 2014
High Dimensional Semiparametric Latent Graphical Model for Mixed Data
Jianqing Fan
Han Liu
Y. Ning
H. Zou
39
120
0
29 Apr 2014
Estimation of positive definite M-matrices and structure learning for attractive Gaussian Markov Random fields
M. Slawski
Matthias Hein
43
104
0
26 Apr 2014
A Note on Moment Inequality for Quadratic Forms
Xiaohui Chen
42
3
0
04 Apr 2014
Learning the Conditional Independence Structure of Stationary Time Series: A Multitask Learning Approach
A. Jung
37
31
0
04 Apr 2014
Worst possible sub-directions in high-dimensional models
Sara van de Geer
43
11
0
27 Mar 2014
Confidence intervals for high-dimensional inverse covariance estimation
Jana Janková
Sara van de Geer
66
185
0
26 Mar 2014
Statistical Structure Learning, Towards a Robust Smart Grid
Hanie Sedghi
E. Jonckheere
141
4
0
07 Mar 2014
Learning Graphical Models With Hubs
Kean Ming Tan
Palma London
Karthika Mohan
Su-In Lee
Maryam Fazel
Daniela Witten
38
98
0
28 Feb 2014
Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Noisy Matrix Decomposition
Hanie Sedghi
Anima Anandkumar
E. Jonckheere
48
13
0
20 Feb 2014
Sparsistency and agnostic inference in sparse PCA
Jing Lei
Vincent Q. Vu
36
54
0
27 Jan 2014
Performance Analysis of Tyler's Covariance Estimator
I. Soloveychik
A. Wiesel
31
22
0
27 Jan 2014
Covariance and precision matrix estimation for high-dimensional time series
Xiaohui Chen
Mengyu Xu
Wei Biao Wu
AI4TS
70
146
0
06 Jan 2014
Concave Penalized Estimation of Sparse Gaussian Bayesian Networks
Bryon Aragam
Qing Zhou
CML
57
107
0
04 Jan 2014
Forward-Backward Greedy Algorithms for General Convex Smooth Functions over A Cardinality Constraint
Ji Liu
R. Fujimaki
Jieping Ye
38
45
0
31 Dec 2013
Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization
Xiao-Tong Yuan
Ping Li
Tong Zhang
44
113
0
22 Nov 2013
Learning Pairwise Graphical Models with Nonlinear Sufficient Statistics
Xiao-Tong Yuan
Ping Li
Tong Zhang
38
1
0
21 Nov 2013
High-dimensional learning of linear causal networks via inverse covariance estimation
Po-Ling Loh
Peter Buhlmann
CML
59
189
0
14 Nov 2013
An Inexact Proximal Path-Following Algorithm for Constrained Convex Minimization
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
19
29
0
07 Nov 2013
Inverse Covariance Estimation for High-Dimensional Data in Linear Time and Space: Spectral Methods for Riccati and Sparse Models
Jean Honorio
Tommi Jaakkola
37
25
0
26 Sep 2013
Asymptotic normality and optimalities in estimation of large Gaussian graphical models
Zhao Ren
Tingni Sun
Cun-Hui Zhang
Harrison H. Zhou
66
244
0
24 Sep 2013
Composite Self-Concordant Minimization
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
41
94
0
13 Aug 2013
The Cluster Graphical Lasso for improved estimation of Gaussian graphical models
Kean Ming Tan
Daniela Witten
Ali Shojaie
70
71
0
19 Jul 2013
A Survey on Metric Learning for Feature Vectors and Structured Data
A. Bellet
Amaury Habrard
M. Sebban
53
680
0
28 Jun 2013
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation
Cho-Jui Hsieh
Mátyás A. Sustik
Inderjit S. Dhillon
Pradeep Ravikumar
26
343
0
13 Jun 2013
On model selection consistency of regularized M-estimators
J. Lee
Yuekai Sun
Jonathan E. Taylor
42
45
0
31 May 2013
Regularity Properties for Sparse Regression
Yan Sun
Jianqing Fan
35
9
0
22 May 2013
Optimal Estimation and Rank Detection for Sparse Spiked Covariance Matrices
Tony Cai
Zongming Ma
Yihong Wu
37
159
0
14 May 2013
Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima
Po-Ling Loh
Martin J. Wainwright
31
512
0
10 May 2013
A Junction Tree Framework for Undirected Graphical Model Selection
Divyanshu Vats
Robert D. Nowak
CML
51
8
0
17 Apr 2013
Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models
Zhaoshi Meng
Dennis L. Wei
A. Wiesel
Alfred Hero
28
25
0
19 Mar 2013
Regularized rank-based estimation of high-dimensional nonparanormal graphical models
Lingzhou Xue
H. Zou
37
263
0
13 Feb 2013
Optimal rates of convergence for sparse covariance matrix estimation
T. Cai
Harrison H. Zhou
96
245
0
13 Feb 2013
Covariance Estimation in High Dimensions via Kronecker Product Expansions
Theodoros Tsiligkaridis
Alfred Hero
33
110
0
12 Feb 2013
A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
33
29
0
08 Jan 2013
Optimal classification in sparse Gaussian graphic model
Yingying Fan
Jiashun Jin
Zhigang Yao
36
38
0
21 Dec 2012
Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses
Po-Ling Loh
Martin J. Wainwright
37
180
0
03 Dec 2012
High-Dimensional Covariance Decomposition into Sparse Markov and Independence Models
Majid Janzamin
Anima Anandkumar
33
12
0
05 Nov 2012
Discussion: Latent variable graphical model selection via convex optimization
Emmanuel J. Candés
Mahdi Soltanolkotabi
44
39
0
05 Nov 2012
Discussion: Latent variable graphical model selection via convex optimization
Zhao Ren
Harrison H. Zhou
30
3
0
05 Nov 2012
Discussion: Latent variable graphical model selection via convex optimization
Christophe Giraud
Alexandre B. Tsybakov
28
8
0
05 Nov 2012
Discussion: Latent variable graphical model selection via convex optimization
Martin J. Wainwright
40
8
0
05 Nov 2012
Adaptive covariance matrix estimation through block thresholding
By T. Tony Cai
M. Yuan
32
129
0
02 Nov 2012
Parallel MCMC with Generalized Elliptical Slice Sampling
Robert Nishihara
Iain Murray
Ryan P. Adams
62
79
0
28 Oct 2012
Strong oracle optimality of folded concave penalized estimation
Jianqing Fan
Lingzhou Xue
H. Zou
54
302
0
22 Oct 2012
Partial Gaussian Graphical Model Estimation
Xiao-Tong Yuan
Tong Zhang
47
42
0
28 Sep 2012
Previous
1
2
3
4
5
6
7
Next