Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0811.3628
Cited By
High-dimensional covariance estimation by minimizing
ℓ
1
\ell_1
ℓ
1
-penalized log-determinant divergence
21 November 2008
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High-dimensional covariance estimation by minimizing $\ell_1$-penalized log-determinant divergence"
50 / 335 papers shown
Title
Efficient Statistics for Sparse Graphical Models from Truncated Samples
Arnab Bhattacharyya
Rathin Desai
Sai Ganesh Nagarajan
Ioannis Panageas
9
4
0
17 Jun 2020
Estimating High-dimensional Covariance and Precision Matrices under General Missing Dependence
Seongoh Park
Xinlei Wang
Johan Lim
6
13
0
08 Jun 2020
Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery
M. Laszkiewicz
Asja Fischer
Johannes Lederer
14
5
0
01 May 2020
Dependence in elliptical partial correlation graphs
D. Rossell
Piotr Zwiernik
6
17
0
28 Apr 2020
Beyond Data Samples: Aligning Differential Networks Estimation with Scientific Knowledge
Arshdeep Sekhon
Zhe Wang
Yanjun Qi
12
0
0
24 Apr 2020
Estimation of sparse Gaussian graphical models with hidden clustering structure
Meixia Lin
Defeng Sun
Kim-Chuan Toh
Chengjing Wang
9
3
0
17 Apr 2020
Bayesian inference for high-dimensional decomposable graphs
Kyoungjae Lee
Xuan Cao
13
6
0
17 Apr 2020
A partial graphical model with a structural prior on the direct links between predictors and responses
Eunice Okome Obiang
Pascal Jézéquel
Frédéric Proia
11
2
0
26 Mar 2020
FuDGE: A Method to Estimate a Functional Differential Graph in a High-Dimensional Setting
Boxin Zhao
Y Samuel Wang
Mladen Kolar
11
10
0
11 Mar 2020
Gaussian Graphical Model exploration and selection in high dimension low sample size setting
Thomas Lartigue
Simona Bottani
Stéphanie Baron
O. Colliot
S. Durrleman
S. Allassonnière
24
6
0
11 Mar 2020
Learning Gaussian Graphical Models via Multiplicative Weights
Anamay Chaturvedi
Jonathan Scarlett
26
3
0
20 Feb 2020
Imputation for High-Dimensional Linear Regression
Kabir Chandrasekher
A. Alaoui
Andrea Montanari
27
5
0
24 Jan 2020
Graph quilting: graphical model selection from partially observed covariances
Giuseppe Vinci
Gautam Dasarathy
Genevera I. Allen
CML
10
20
0
11 Dec 2019
Graph estimation for Gaussian data zero-inflated by double truncation
Gégout-Petit Anne
Gueudin-Muller Aurélie
Karmann Clémence
9
3
0
18 Nov 2019
Estimation of dynamic networks for high-dimensional nonstationary time series
Mengyu Xu
Xiaohui Chen
Weichi Wu
AI4TS
26
7
0
14 Nov 2019
Partial Separability and Functional Graphical Models for Multivariate Gaussian Processes
Javier Zapata
Sang-Yun Oh
Alexander Petersen
11
38
0
07 Oct 2019
Distance-learning For Approximate Bayesian Computation To Model a Volcanic Eruption
Lorenzo Pacchiardi
Pierre Künzli
Marcel Schoengens
B. Chopard
Ritabrata Dutta
20
13
0
28 Sep 2019
Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data
Yongqian Li
J. M. F. Moura
AI4TS
27
28
0
09 Sep 2019
Graph-based Transforms for Video Coding
Hilmi E. Egilmez
Y. Chao
Antonio Ortega
9
25
0
03 Sep 2019
Graph inference with clustering and false discovery rate control
Tabea Rebafka
Étienne Roquain
Fanny Villers
31
6
0
23 Jul 2019
Feature Graph Learning for 3D Point Cloud Denoising
Wei Hu
Xiang Gao
Gene Cheung
Zongming Guo
23
87
0
22 Jul 2019
Change point detection for graphical models in the presence of missing values
Malte Londschien
Solt Kovács
Peter Buhlmann
22
28
0
11 Jul 2019
High-dimensional Gaussian graphical model for network-linked data
Tianxi Li
Cheng Qian
Elizaveta Levina
Ji Zhu
14
15
0
04 Jul 2019
A greedy algorithm for sparse precision matrix approximation
Didi Lv
Xiaoqun Zhang
16
1
0
01 Jul 2019
Direct Learning with Guarantees of the Difference DAG Between Structural Equation Models
Asish Ghoshal
Kevin Bello
Jean Honorio
CML
14
8
0
28 Jun 2019
Efficient Covariance Estimation from Temporal Data
Hrayr Harutyunyan
Daniel Moyer
Hrant Khachatrian
Greg Ver Steeg
Aram Galstyan
16
2
0
30 May 2019
Learning Gaussian DAGs from Network Data
Hangjian Li
Oscar Hernan Madrid Padilla
Qing Zhou
CML
22
2
0
26 May 2019
Learning Clique Forests
Guido Previde Massara
T. Aste
26
16
0
06 May 2019
Learning Some Popular Gaussian Graphical Models without Condition Number Bounds
Jonathan A. Kelner
Frederic Koehler
Raghu Meka
Ankur Moitra
25
32
0
03 May 2019
Learning Dependency Structures for Weak Supervision Models
P. Varma
Frederic Sala
A. He
Alexander Ratner
Christopher Ré
NoLa
19
67
0
14 Mar 2019
Ising Models with Latent Conditional Gaussian Variables
Frank Nussbaum
Joachim Giesen
CML
17
6
0
28 Jan 2019
High Dimensional Robust
M
M
M
-Estimation: Arbitrary Corruption and Heavy Tails
L. Liu
Tianyang Li
C. Caramanis
18
14
0
24 Jan 2019
Generalized Score Matching for Non-Negative Data
Shiqing Yu
Mathias Drton
Ali Shojaie
19
2
0
26 Dec 2018
Structure Learning of Sparse GGMs over Multiple Access Networks
Mostafa Tavassolipour
Armin Karamzade
Reza Mirzaeifard
S. Motahari
M. M. Manzuri Shalmani
19
2
0
26 Dec 2018
An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss
Cheng-Long Wang
Binyan Jiang
4
25
0
12 Nov 2018
Scale calibration for high-dimensional robust regression
Yu Li
19
25
0
06 Nov 2018
RSVP-graphs: Fast High-dimensional Covariance Matrix Estimation under Latent Confounding
Rajen Dinesh Shah
Benjamin Frot
Gian-Andrea Thanei
N. Meinshausen
19
6
0
02 Nov 2018
High-Dimensional Poisson DAG Model Learning Using
ℓ
1
\ell_1
ℓ
1
-Regularized Regression
G. Park
Sion Park
15
18
0
05 Oct 2018
High-Temperature Structure Detection in Ferromagnets
Yuan Cao
Matey Neykov
Han Liu
24
10
0
21 Sep 2018
Learning of Tree-Structured Gaussian Graphical Models on Distributed Data under Communication Constraints
Mostafa Tavassolipour
S. Motahari
M. Manzuri-Shalmani
11
8
0
21 Sep 2018
A convex formulation for high-dimensional sparse sliced inverse regression
Kean Ming Tan
Zhaoran Wang
Tong Zhang
Han Liu
R. Cook
9
36
0
17 Sep 2018
Learning high-dimensional graphical models with regularized quadratic scoring
Eric Janofsky
14
1
0
15 Sep 2018
Uniform Inference in High-Dimensional Gaussian Graphical Models
Jan Rabenseifner
Jannis Kuck
Martin Spindler
Victor Chernozhukov
14
6
0
30 Aug 2018
On Causal Discovery with Equal Variance Assumption
Wenyu Chen
Mathias Drton
Y Samuel Wang
CML
19
84
0
09 Jul 2018
High-Dimensional Inference for Cluster-Based Graphical Models
Carson Eisenach
F. Bunea
Y. Ning
Claudiu Dinicu
12
8
0
13 Jun 2018
Valid Post-selection Inference in Assumption-lean Linear Regression
Arun K. Kuchibhotla
L. Brown
A. Buja
E. George
Linda H. Zhao
11
13
0
11 Jun 2018
Identifiability in Gaussian Graphical Models
D. Soh
S. Tatikonda
34
3
0
10 Jun 2018
Stationary Geometric Graphical Model Selection
I. Soloveychik
Vahid Tarokh
13
0
0
10 Jun 2018
A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models
Beilun Wang
Arshdeep Sekhon
Yanjun Qi
13
6
0
01 Jun 2018
M-estimation with the Trimmed l1 Penalty
Jihun Yun
P. Zheng
Eunho Yang
A. Lozano
Aleksandr Aravkin
19
0
0
19 May 2018
Previous
1
2
3
4
5
6
7
Next