Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0811.3628
Cited By
High-dimensional covariance estimation by minimizing
ℓ
1
\ell_1
ℓ
1
-penalized log-determinant divergence
21 November 2008
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High-dimensional covariance estimation by minimizing $\ell_1$-penalized log-determinant divergence"
50 / 335 papers shown
Title
Low-Rank Covariance Completion for Graph Quilting with Applications to Functional Connectivity
Andersen Chang
Lili Zheng
Genevera I. Allen
13
3
0
17 Sep 2022
On the Lasso for Graphical Continuous Lyapunov Models
Philipp Dettling
Mathias Drton
Mladen Kolar
6
6
0
29 Aug 2022
On confidence intervals for precision matrices and the eigendecomposition of covariance matrices
Teodora Popordanoska
A. Tiulpin
Wacha Bounliphone
Matthew B. Blaschko
11
0
0
25 Aug 2022
Learning the Structure of Large Networked Systems Obeying Conservation Laws
Anirudh Rayas
A. Rajasekhar
Gautam Dasarathy
13
5
0
14 Jun 2022
Supervised Dictionary Learning with Auxiliary Covariates
Joo-Hyun Lee
Hanbaek Lyu
W. Yao
27
1
0
14 Jun 2022
Provable Guarantees for Sparsity Recovery with Deterministic Missing Data Patterns
Chuyang Ke
Jean Honorio
15
0
0
10 Jun 2022
Sparse Mixed Linear Regression with Guarantees: Taming an Intractable Problem with Invex Relaxation
Adarsh Barik
Jean Honorio
11
6
0
02 Jun 2022
uGLAD: Sparse graph recovery by optimizing deep unrolled networks
H. Shrivastava
Urszula Chajewska
Robin Abraham
Xinshi Chen
39
8
0
23 May 2022
Structure Learning in Graphical Models from Indirect Observations
Hang Zhang
Afshin Abdi
Faramarz Fekri
CML
24
0
0
06 May 2022
Order-based Structure Learning without Score Equivalence
Hyunwoong Chang
James Cai
Quan Zhou
CML
OffRL
29
3
0
10 Feb 2022
Total positivity in multivariate extremes
Frank Rottger
Sebastian Engelke
Piotr Zwiernik
39
20
0
29 Dec 2021
An additive graphical model for discrete data
Jun Tao
Bing Li
Lingzhou Xue
8
3
0
29 Dec 2021
Fast Projected Newton-like Method for Precision Matrix Estimation under Total Positivity
Jian-Feng Cai
José Vinícius de Miranda Cardoso
Daniel P. Palomar
Jiaxi Ying
35
10
0
03 Dec 2021
Optimal regularizations for data generation with probabilistic graphical models
Arnaud Fanthomme
Francesca Rizzato
Simona Cocco
R. Monasson
9
3
0
02 Dec 2021
Sparse Graph Learning Under Laplacian-Related Constraints
Jitendra Tugnait
17
12
0
16 Nov 2021
On Sparse High-Dimensional Graphical Model Learning For Dependent Time Series
Jitendra Tugnait
CML
23
13
0
15 Nov 2021
Scalable Intervention Target Estimation in Linear Models
Burak Varici
Karthikeyan Shanmugam
P. Sattigeri
A. Tajer
CML
17
9
0
15 Nov 2021
The Internet of Federated Things (IoFT): A Vision for the Future and In-depth Survey of Data-driven Approaches for Federated Learning
Raed Al Kontar
Naichen Shi
Xubo Yue
Seokhyun Chung
E. Byon
...
C. Okwudire
Garvesh Raskutti
R. Saigal
Karandeep Singh
Ye Zhisheng
FedML
38
50
0
09 Nov 2021
Learning linear non-Gaussian directed acyclic graph with diverging number of nodes
Ruixuan Zhao
Xin He
Junhui Wang
CML
37
5
0
01 Nov 2021
Fast and Accurate Graph Learning for Huge Data via Minipatch Ensembles
Tianyi Yao
Minjie Wang
Genevera I. Allen
11
0
0
22 Oct 2021
On Optimal Interpolation In Linear Regression
Eduard Oravkin
Patrick Rebeschini
11
3
0
21 Oct 2021
Joint Functional Gaussian Graphical Models
Ilias Moysidis
Bing Li
27
3
0
13 Oct 2021
Estimation When Both Covariance And Precision Matrices Are Sparse
S. MacNamara
Erik Schlögl
Z. Botev
14
1
0
15 Aug 2021
The folded concave Laplacian spectral penalty learns block diagonal sparsity patterns with the strong oracle property
Iain Carmichael
32
2
0
07 Jul 2021
A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity
Zeyu Wu
Cheng-Long Wang
Weidong Liu
36
3
0
07 Jul 2021
MARS: A second-order reduction algorithm for high-dimensional sparse precision matrices estimation
Qian Li
Binyan Jiang
Defeng Sun
11
3
0
25 Jun 2021
A Bayesian approach for partial Gaussian graphical models with sparsity
Eunice Okome Obiang
Pascal Jézéquel
Frédéric Proia
6
1
0
23 May 2021
Definite Non-Ancestral Relations and Structure Learning
Wenyu Chen
Mathias Drton
Ali Shojaie
CML
12
1
0
20 May 2021
Learning Gaussian Graphical Models with Latent Confounders
Ke Wang
Alexander M. Franks
Sang-Yun Oh
CML
29
2
0
14 May 2021
Thresholded Graphical Lasso Adjusts for Latent Variables: Application to Functional Neural Connectivity
Minjie Wang
Genevera I. Allen
11
5
0
13 Apr 2021
Nonparametric and high-dimensional functional graphical models
Eftychia Solea
Holger Dette
44
14
0
18 Mar 2021
Asymptotic Theory of
ℓ
1
\ell_1
ℓ
1
-Regularized PDE Identification from a Single Noisy Trajectory
Yuchen He
Namjoon Suh
X. Huo
Sungha Kang
Y. Mei
21
1
0
12 Mar 2021
Joint Network Topology Inference via Structured Fusion Regularization
Yanli Yuan
D. Soh
Xiao Yang
Kun Guo
Tony Q. S. Quek
29
2
0
05 Mar 2021
Comparing the Value of Labeled and Unlabeled Data in Method-of-Moments Latent Variable Estimation
Mayee F. Chen
Benjamin Cohen-Wang
Stephen Mussmann
Frederic Sala
Christopher Ré
43
10
0
03 Mar 2021
Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem
Adarsh Barik
Jean Honorio
FaML
19
7
0
19 Feb 2021
Scalable Inference of Sparsely-changing Markov Random Fields with Strong Statistical Guarantees
S. Fattahi
A. Gómez
21
5
0
06 Feb 2021
Tree-based Node Aggregation in Sparse Graphical Models
Ines Wilms
Jacob Bien
18
4
0
29 Jan 2021
Graphical Elastic Net and Target Matrices: Fast Algorithms and Software for Sparse Precision Matrix Estimation
Solt Kovács
Tobias Ruckstuhl
Helena Obrist
Peter Buhlmann
24
9
0
06 Jan 2021
Estimation of Shortest Path Covariance Matrices
R. Maity
Cameron Musco
12
0
0
19 Nov 2020
FiGLearn: Filter and Graph Learning using Optimal Transport
Matthias Minder
Zahra Farsijani
Dhruti Shah
Mireille El Gheche
P. Frossard
OT
8
1
0
29 Oct 2020
On Learning Continuous Pairwise Markov Random Fields
Abhin Shah
Devavrat Shah
G. Wornell
11
11
0
28 Oct 2020
Transfer Learning in Large-scale Gaussian Graphical Models with False Discovery Rate Control
Sai Li
T. Tony Cai
Hongzhe Li
22
52
0
21 Oct 2020
Statistical Query Algorithms and Low-Degree Tests Are Almost Equivalent
Matthew Brennan
Guy Bresler
Samuel B. Hopkins
J. Li
T. Schramm
19
62
0
13 Sep 2020
Covariance estimation with nonnegative partial correlations
Jake A. Soloff
Adityanand Guntuboyina
Michael I. Jordan
15
10
0
30 Jul 2020
A General Family of Stochastic Proximal Gradient Methods for Deep Learning
Jihun Yun
A. Lozano
Eunho Yang
20
12
0
15 Jul 2020
Asymptotic control of FWER under Gaussian assumption: application to correlation tests
S. Achard
Pierre Borgnat
Irène Gannaz
11
1
0
02 Jul 2020
Testing and Support Recovery of Correlation Structures for Matrix-Valued Observations with an Application to Stock Market Data
Xin Chen
Dan Yang
Yan Xu
Yin Xia
Dong Wang
Haipeng Shen
31
9
0
30 Jun 2020
Does the
ℓ
1
\ell_1
ℓ
1
-norm Learn a Sparse Graph under Laplacian Constrained Graphical Models?
Jiaxi Ying
J. Cardoso
Daniel P. Palomar
8
10
0
26 Jun 2020
Meta Learning for Support Recovery in High-dimensional Precision Matrix Estimation
Qian Zhang
Yilin Zheng
Jean Honorio
60
6
0
22 Jun 2020
Exact Support Recovery in Federated Regression with One-shot Communication
Adarsh Barik
Jean Honorio
FedML
43
2
0
22 Jun 2020
Previous
1
2
3
4
5
6
7
Next