Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.21920
Cited By
InfoSAM: Fine-Tuning the Segment Anything Model from An Information-Theoretic Perspective
28 May 2025
Yuanhong Zhang
Muyao Yuan
Weizhan Zhang
Tieliang Gong
Wen Wen
Jiangyong Ying
Weijie Shi
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"InfoSAM: Fine-Tuning the Segment Anything Model from An Information-Theoretic Perspective"
7 / 7 papers shown
Title
SAMCL: Empowering SAM to Continually Learn from Dynamic Domains
Zeqing Wang
Kangye Ji
Di Wang
Fei Cheng
VLM
64
1
0
06 Dec 2024
Segment Anything in High Quality
Lei Ke
Mingqiao Ye
Martin Danelljan
Yifan Liu
Yu-Wing Tai
Chi-Keung Tang
Feng Yu
VLM
69
322
0
02 Jun 2023
BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models
Elad Ben-Zaken
Shauli Ravfogel
Yoav Goldberg
116
1,191
0
18 Jun 2021
Anabranch Network for Camouflaged Object Segmentation
Trung-Nghia Le
Tam V. Nguyen
Zhongliang Nie
M. Tran
Akihiro Sugimoto
58
486
0
20 May 2021
Distilling Knowledge via Knowledge Review
Pengguang Chen
Shu Liu
Hengshuang Zhao
Jiaya Jia
163
429
0
19 Apr 2021
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
Judy Hoffman
Eric Tzeng
Taesung Park
Jun-Yan Zhu
Phillip Isola
Kate Saenko
Alexei A. Efros
Trevor Darrell
93
2,985
0
08 Nov 2017
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
53
1,570
0
09 Mar 2015
1