ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.21920
  4. Cited By
InfoSAM: Fine-Tuning the Segment Anything Model from An Information-Theoretic Perspective

InfoSAM: Fine-Tuning the Segment Anything Model from An Information-Theoretic Perspective

28 May 2025
Yuanhong Zhang
Muyao Yuan
Weizhan Zhang
Tieliang Gong
Wen Wen
Jiangyong Ying
Weijie Shi
    VLM
ArXivPDFHTML

Papers citing "InfoSAM: Fine-Tuning the Segment Anything Model from An Information-Theoretic Perspective"

2 / 2 papers shown
Title
SAMCL: Empowering SAM to Continually Learn from Dynamic Domains
SAMCL: Empowering SAM to Continually Learn from Dynamic Domains
Zeqing Wang
Kangye Ji
Di Wang
Fei Cheng
VLM
64
1
0
06 Dec 2024
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
CyCADA: Cycle-Consistent Adversarial Domain Adaptation
Judy Hoffman
Eric Tzeng
Taesung Park
Jun-Yan Zhu
Phillip Isola
Kate Saenko
Alexei A. Efros
Trevor Darrell
85
2,985
0
08 Nov 2017
1