ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.16156
  4. Cited By
Integral Imprecise Probability Metrics

Integral Imprecise Probability Metrics

22 May 2025
Siu Lun Chau
Michele Caprio
Krikamol Muandet
ArXivPDFHTML

Papers citing "Integral Imprecise Probability Metrics"

50 / 52 papers shown
Title
Position: Epistemic Artificial Intelligence is Essential for Machine Learning Models to Know When They Do Not Know
Position: Epistemic Artificial Intelligence is Essential for Machine Learning Models to Know When They Do Not Know
Shireen Kudukkil Manchingal
Fabio Cuzzolin
87
1
0
08 May 2025
An Axiomatic Assessment of Entropy- and Variance-based Uncertainty Quantification in Regression
An Axiomatic Assessment of Entropy- and Variance-based Uncertainty Quantification in Regression
Christopher Bülte
Yusuf Sale
Timo Löhr
Paul Hofman
Gitta Kutyniok
Eyke Hüllermeier
UD
90
3
0
25 Apr 2025
Random-Set Large Language Models
Random-Set Large Language Models
Muhammad Mubashar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
91
1
0
25 Apr 2025
Truthful Elicitation of Imprecise Forecasts
Truthful Elicitation of Imprecise Forecasts
Anurag Singh
Siu Lun Chau
Krikamol Muandet
103
1
0
20 Mar 2025
A calibration test for evaluating set-based epistemic uncertainty representations
A calibration test for evaluating set-based epistemic uncertainty representations
Mira Jürgens
Thomas Mortier
Eyke Hüllermeier
Viktor Bengs
Willem Waegeman
63
1
0
22 Feb 2025
Conformal Prediction Regions are Imprecise Highest Density Regions
Conformal Prediction Regions are Imprecise Highest Density Regions
Michele Caprio
Yusuf Sale
Eyke Hüllermeier
122
1
0
10 Feb 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
175
13
0
28 Jan 2025
Rethinking Aleatoric and Epistemic Uncertainty
Rethinking Aleatoric and Epistemic Uncertainty
Freddie Bickford-Smith
Jannik Kossen
Eleanor Trollope
Mark van der Wilk
Adam Foster
Tom Rainforth
UD
PER
51
5
0
31 Dec 2024
Conformalized Credal Regions for Classification with Ambiguous Ground Truth
Conformalized Credal Regions for Classification with Ambiguous Ground Truth
Michele Caprio
David Stutz
Shuo Li
Arnaud Doucet
UQCV
142
5
0
07 Nov 2024
An Overview of Causal Inference using Kernel Embeddings
An Overview of Causal Inference using Kernel Embeddings
Dino Sejdinovic
CML
BDL
84
4
0
30 Oct 2024
Robust Kernel Hypothesis Testing under Data Corruption
Robust Kernel Hypothesis Testing under Data Corruption
Antonin Schrab
Ilmun Kim
70
4
0
30 May 2024
Domain Generalisation via Imprecise Learning
Domain Generalisation via Imprecise Learning
Anurag Singh
Siu Lun Chau
S. Bouabid
Krikamol Muandet
AI4CE
OOD
66
9
0
06 Apr 2024
Hierarchical Integral Probability Metrics: A distance on random
  probability measures with low sample complexity
Hierarchical Integral Probability Metrics: A distance on random probability measures with low sample complexity
Marta Catalano
Hugo Lavenant
37
3
0
01 Feb 2024
Second-Order Uncertainty Quantification: Variance-Based Measures
Second-Order Uncertainty Quantification: Variance-Based Measures
Yusuf Sale
Paul Hofman
Lisa Wimmer
Eyke Hüllermeier
Thomas Nagler
PER
UQCV
UD
51
11
0
30 Dec 2023
Second-Order Uncertainty Quantification: A Distance-Based Approach
Second-Order Uncertainty Quantification: A Distance-Based Approach
Yusuf Sale
Viktor Bengs
Michele Caprio
Eyke Hüllermeier
PER
UQCV
UD
48
23
0
02 Dec 2023
A Survey on Hallucination in Large Language Models: Principles,
  Taxonomy, Challenges, and Open Questions
A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions
Lei Huang
Weijiang Yu
Weitao Ma
Weihong Zhong
Zhangyin Feng
...
Qianglong Chen
Weihua Peng
Xiaocheng Feng
Bing Qin
Ting Liu
LRM
HILM
78
805
0
09 Nov 2023
Distributionally Robust Statistical Verification with Imprecise Neural Networks
Distributionally Robust Statistical Verification with Imprecise Neural Networks
Souradeep Dutta
Michele Caprio
Vivian Lin
Matthew Cleaveland
Kuk Jin Jang
I. Ruchkin
O. Sokolsky
Insup Lee
OOD
AAML
138
8
0
28 Aug 2023
Approximating Counterfactual Bounds while Fusing Observational, Biased
  and Randomised Data Sources
Approximating Counterfactual Bounds while Fusing Observational, Biased and Randomised Data Sources
Marco Zaffalon
Alessandro Antonucci
Rafael Cabañas
David Huber
44
6
0
31 Jul 2023
Conformal prediction under ambiguous ground truth
Conformal prediction under ambiguous ground truth
David Stutz
Abhijit Guha Roy
Tatiana Matejovicova
Patricia Strachan
A. Cemgil
Arnaud Doucet
123
18
0
18 Jul 2023
A Novel Bayes' Theorem for Upper Probabilities
A Novel Bayes' Theorem for Upper Probabilities
Michele Caprio
Yusuf Sale
Eyke Hüllermeier
Insup Lee
46
12
0
13 Jul 2023
Is the Volume of a Credal Set a Good Measure for Epistemic Uncertainty?
Is the Volume of a Credal Set a Good Measure for Epistemic Uncertainty?
Yusuf Sale
Michele Caprio
Eyke Hüllermeier
UD
39
27
0
16 Jun 2023
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process
  Models
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau
Krikamol Muandet
Dino Sejdinovic
FAtt
77
15
0
24 May 2023
Constriction for sets of probabilities
Constriction for sets of probabilities
Michele Caprio
Teddy Seidenfeld
32
8
0
13 Jan 2023
ROAD-R: The Autonomous Driving Dataset with Logical Requirements
ROAD-R: The Autonomous Driving Dataset with Logical Requirements
Eleonora Giunchiglia
Mihaela C. Stoian
Salman Khan
Fabio Cuzzolin
Thomas Lukasiewicz
AI4TS
83
34
0
04 Oct 2022
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are
  Conditional Entropy and Mutual Information Appropriate Measures?
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PER
UD
60
74
0
07 Sep 2022
Gated Domain Units for Multi-source Domain Generalization
Gated Domain Units for Multi-source Domain Generalization
Simon Foll
Alina Dubatovka
Eugen Ernst
Siu Lun Chau
Martin Maritsch
Patrik Okanovic
Gudrun Thater
J. M. Buhmann
Felix Wortmann
Krikamol Muandet
OOD
95
4
0
24 Jun 2022
RKHS-SHAP: Shapley Values for Kernel Methods
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
38
20
0
18 Oct 2021
Dynamic Precise and Imprecise Probability Kinematics
Dynamic Precise and Imprecise Probability Kinematics
Michele Caprio
Ruobin Gong
18
10
0
08 Oct 2021
Ensemble-based Uncertainty Quantification: Bayesian versus Credal
  Inference
Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference
M. Shaker
Eyke Hüllermeier
UD
UQCV
PER
BDL
262
17
0
21 Jul 2021
An Imprecise SHAP as a Tool for Explaining the Class Probability
  Distributions under Limited Training Data
An Imprecise SHAP as a Tool for Explaining the Class Probability Distributions under Limited Training Data
Lev V. Utkin
A. Konstantinov
Kirill Vishniakov
FAtt
59
6
0
16 Jun 2021
BayesIMP: Uncertainty Quantification for Causal Data Fusion
BayesIMP: Uncertainty Quantification for Causal Data Fusion
Siu Lun Chau
Jean-François Ton
Javier I. González
Yee Whye Teh
Dino Sejdinovic
CML
35
20
0
07 Jun 2021
Deconditional Downscaling with Gaussian Processes
Deconditional Downscaling with Gaussian Processes
Siu Lun Chau
S. Bouabid
Dino Sejdinovic
BDL
42
22
0
27 May 2021
Ergodic Theorems for Dynamic Imprecise Probability Kinematics
Ergodic Theorems for Dynamic Imprecise Probability Kinematics
Michele Caprio
S. Mukherjee
22
9
0
13 Mar 2020
Aleatoric and Epistemic Uncertainty with Random Forests
Aleatoric and Epistemic Uncertainty with Random Forests
M. Shaker
Eyke Hüllermeier
BDL
UD
PER
34
71
0
03 Jan 2020
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction
  to Concepts and Methods
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
163
1,388
0
21 Oct 2019
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
119
74
0
29 Sep 2019
Statistical Inference for Generative Models with Maximum Mean
  Discrepancy
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
44
72
0
13 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
83
163
0
11 Jun 2019
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
134
969
0
05 Jun 2018
Counterfactual Mean Embeddings
Counterfactual Mean Embeddings
Krikamol Muandet
Motonobu Kanagawa
Sorawit Saengkyongam
S. Marukatat
CML
OffRL
44
39
0
22 May 2018
MMD GAN: Towards Deeper Understanding of Moment Matching Network
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
53
720
0
24 May 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
286
4,667
0
15 Mar 2017
Uncertain programming model for multi-item solid transportation problem
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
69
732
0
31 May 2016
Learning Theory for Distribution Regression
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
35
138
0
08 Nov 2014
Credal Model Averaging for classification: representing prior ignorance
  and expert opinions
Credal Model Averaging for classification: representing prior ignorance and expert opinions
Giorgio Corani
A. Mignatti
35
11
0
14 May 2014
On the optimal estimation of probability measures in weak and strong
  topologies
On the optimal estimation of probability measures in weak and strong topologies
Bharath K. Sriperumbudur
OT
81
65
0
30 Oct 2013
Domain Generalization via Invariant Feature Representation
Domain Generalization via Invariant Feature Representation
Krikamol Muandet
David Balduzzi
Bernhard Schölkopf
OOD
87
1,166
0
10 Jan 2013
Multiple Source Adaptation and the Renyi Divergence
Multiple Source Adaptation and the Renyi Divergence
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
70
148
0
09 May 2012
Learning from Distributions via Support Measure Machines
Learning from Distributions via Support Measure Machines
Krikamol Muandet
Kenji Fukumizu
Francesco Dinuzzo
Bernhard Schölkopf
84
197
0
29 Feb 2012
Universality, Characteristic Kernels and RKHS Embedding of Measures
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
157
526
0
03 Mar 2010
12
Next