Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.16156
Cited By
Integral Imprecise Probability Metrics
22 May 2025
Siu Lun Chau
Michele Caprio
Krikamol Muandet
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Integral Imprecise Probability Metrics"
50 / 52 papers shown
Title
Position: Epistemic Artificial Intelligence is Essential for Machine Learning Models to Know When They Do Not Know
Shireen Kudukkil Manchingal
Fabio Cuzzolin
87
1
0
08 May 2025
An Axiomatic Assessment of Entropy- and Variance-based Uncertainty Quantification in Regression
Christopher Bülte
Yusuf Sale
Timo Löhr
Paul Hofman
Gitta Kutyniok
Eyke Hüllermeier
UD
90
3
0
25 Apr 2025
Random-Set Large Language Models
Muhammad Mubashar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
91
1
0
25 Apr 2025
Truthful Elicitation of Imprecise Forecasts
Anurag Singh
Siu Lun Chau
Krikamol Muandet
103
1
0
20 Mar 2025
A calibration test for evaluating set-based epistemic uncertainty representations
Mira Jürgens
Thomas Mortier
Eyke Hüllermeier
Viktor Bengs
Willem Waegeman
63
1
0
22 Feb 2025
Conformal Prediction Regions are Imprecise Highest Density Regions
Michele Caprio
Yusuf Sale
Eyke Hüllermeier
122
1
0
10 Feb 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
175
13
0
28 Jan 2025
Rethinking Aleatoric and Epistemic Uncertainty
Freddie Bickford-Smith
Jannik Kossen
Eleanor Trollope
Mark van der Wilk
Adam Foster
Tom Rainforth
UD
PER
51
5
0
31 Dec 2024
Conformalized Credal Regions for Classification with Ambiguous Ground Truth
Michele Caprio
David Stutz
Shuo Li
Arnaud Doucet
UQCV
142
5
0
07 Nov 2024
An Overview of Causal Inference using Kernel Embeddings
Dino Sejdinovic
CML
BDL
84
4
0
30 Oct 2024
Robust Kernel Hypothesis Testing under Data Corruption
Antonin Schrab
Ilmun Kim
70
4
0
30 May 2024
Domain Generalisation via Imprecise Learning
Anurag Singh
Siu Lun Chau
S. Bouabid
Krikamol Muandet
AI4CE
OOD
66
9
0
06 Apr 2024
Hierarchical Integral Probability Metrics: A distance on random probability measures with low sample complexity
Marta Catalano
Hugo Lavenant
37
3
0
01 Feb 2024
Second-Order Uncertainty Quantification: Variance-Based Measures
Yusuf Sale
Paul Hofman
Lisa Wimmer
Eyke Hüllermeier
Thomas Nagler
PER
UQCV
UD
51
11
0
30 Dec 2023
Second-Order Uncertainty Quantification: A Distance-Based Approach
Yusuf Sale
Viktor Bengs
Michele Caprio
Eyke Hüllermeier
PER
UQCV
UD
48
23
0
02 Dec 2023
A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions
Lei Huang
Weijiang Yu
Weitao Ma
Weihong Zhong
Zhangyin Feng
...
Qianglong Chen
Weihua Peng
Xiaocheng Feng
Bing Qin
Ting Liu
LRM
HILM
78
805
0
09 Nov 2023
Distributionally Robust Statistical Verification with Imprecise Neural Networks
Souradeep Dutta
Michele Caprio
Vivian Lin
Matthew Cleaveland
Kuk Jin Jang
I. Ruchkin
O. Sokolsky
Insup Lee
OOD
AAML
138
8
0
28 Aug 2023
Approximating Counterfactual Bounds while Fusing Observational, Biased and Randomised Data Sources
Marco Zaffalon
Alessandro Antonucci
Rafael Cabañas
David Huber
44
6
0
31 Jul 2023
Conformal prediction under ambiguous ground truth
David Stutz
Abhijit Guha Roy
Tatiana Matejovicova
Patricia Strachan
A. Cemgil
Arnaud Doucet
123
18
0
18 Jul 2023
A Novel Bayes' Theorem for Upper Probabilities
Michele Caprio
Yusuf Sale
Eyke Hüllermeier
Insup Lee
46
12
0
13 Jul 2023
Is the Volume of a Credal Set a Good Measure for Epistemic Uncertainty?
Yusuf Sale
Michele Caprio
Eyke Hüllermeier
UD
39
27
0
16 Jun 2023
Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
Siu Lun Chau
Krikamol Muandet
Dino Sejdinovic
FAtt
77
15
0
24 May 2023
Constriction for sets of probabilities
Michele Caprio
Teddy Seidenfeld
32
8
0
13 Jan 2023
ROAD-R: The Autonomous Driving Dataset with Logical Requirements
Eleonora Giunchiglia
Mihaela C. Stoian
Salman Khan
Fabio Cuzzolin
Thomas Lukasiewicz
AI4TS
83
34
0
04 Oct 2022
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PER
UD
60
74
0
07 Sep 2022
Gated Domain Units for Multi-source Domain Generalization
Simon Foll
Alina Dubatovka
Eugen Ernst
Siu Lun Chau
Martin Maritsch
Patrik Okanovic
Gudrun Thater
J. M. Buhmann
Felix Wortmann
Krikamol Muandet
OOD
95
4
0
24 Jun 2022
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
38
20
0
18 Oct 2021
Dynamic Precise and Imprecise Probability Kinematics
Michele Caprio
Ruobin Gong
16
10
0
08 Oct 2021
Ensemble-based Uncertainty Quantification: Bayesian versus Credal Inference
M. Shaker
Eyke Hüllermeier
UD
UQCV
PER
BDL
262
17
0
21 Jul 2021
An Imprecise SHAP as a Tool for Explaining the Class Probability Distributions under Limited Training Data
Lev V. Utkin
A. Konstantinov
Kirill Vishniakov
FAtt
59
6
0
16 Jun 2021
BayesIMP: Uncertainty Quantification for Causal Data Fusion
Siu Lun Chau
Jean-François Ton
Javier I. González
Yee Whye Teh
Dino Sejdinovic
CML
35
20
0
07 Jun 2021
Deconditional Downscaling with Gaussian Processes
Siu Lun Chau
S. Bouabid
Dino Sejdinovic
BDL
42
22
0
27 May 2021
Ergodic Theorems for Dynamic Imprecise Probability Kinematics
Michele Caprio
S. Mukherjee
18
9
0
13 Mar 2020
Aleatoric and Epistemic Uncertainty with Random Forests
M. Shaker
Eyke Hüllermeier
BDL
UD
PER
34
71
0
03 Jan 2020
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
163
1,388
0
21 Oct 2019
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
117
74
0
29 Sep 2019
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
44
72
0
13 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
83
163
0
11 Jun 2019
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
134
969
0
05 Jun 2018
Counterfactual Mean Embeddings
Krikamol Muandet
Motonobu Kanagawa
Sorawit Saengkyongam
S. Marukatat
CML
OffRL
44
39
0
22 May 2018
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
53
720
0
24 May 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
286
4,667
0
15 Mar 2017
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
66
732
0
31 May 2016
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
35
138
0
08 Nov 2014
Credal Model Averaging for classification: representing prior ignorance and expert opinions
Giorgio Corani
A. Mignatti
33
11
0
14 May 2014
On the optimal estimation of probability measures in weak and strong topologies
Bharath K. Sriperumbudur
OT
81
65
0
30 Oct 2013
Domain Generalization via Invariant Feature Representation
Krikamol Muandet
David Balduzzi
Bernhard Schölkopf
OOD
87
1,166
0
10 Jan 2013
Multiple Source Adaptation and the Renyi Divergence
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
70
148
0
09 May 2012
Learning from Distributions via Support Measure Machines
Krikamol Muandet
Kenji Fukumizu
Francesco Dinuzzo
Bernhard Schölkopf
82
197
0
29 Feb 2012
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
157
526
0
03 Mar 2010
1
2
Next