ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.18368
  4. Cited By
MoST: Efficient Monarch Sparse Tuning for 3D Representation Learning

MoST: Efficient Monarch Sparse Tuning for 3D Representation Learning

24 March 2025
Xu Han
Yuan Tang
Jinfeng Xu
Xianzhi Li
ArXiv (abs)PDFHTML

Papers citing "MoST: Efficient Monarch Sparse Tuning for 3D Representation Learning"

36 / 36 papers shown
Title
Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud
  Learning
Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning
Dingkang Liang
Tianrui Feng
Xin Zhou
Yumeng Zhang
Zhikang Zou
Xiang Bai
53
7
0
10 Oct 2024
Positional Prompt Tuning for Efficient 3D Representation Learning
Positional Prompt Tuning for Efficient 3D Representation Learning
Shaochen Zhang
Zekun Qi
Runpei Dong
Xiuxiu Bai
Xing Wei
81
6
0
21 Aug 2024
Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer
  Learning for Point Cloud Analysis
Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis
Xin Zhou
Dingkang Liang
Wei Xu
Xingkui Zhu
Yihan Xu
Zhikang Zou
Xiang Bai
83
28
0
03 Mar 2024
PointMamba: A Simple State Space Model for Point Cloud Analysis
PointMamba: A Simple State Space Model for Point Cloud Analysis
Dingkang Liang
Xin Zhou
Wei Xu
Xingkui Zhu
Zhikang Zou
Xiaoqing Ye
Xinyu Wang
Xiang Bai
152
100
0
16 Feb 2024
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models
Yaohua Zha
Jinpeng Wang
Tao Dai
Bin Chen
Zhi Wang
Shutao Xia
VLM
79
48
0
14 Apr 2023
Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
Vladislav Lialin
Vijeta Deshpande
Anna Rumshisky
98
177
0
28 Mar 2023
Autoencoders as Cross-Modal Teachers: Can Pretrained 2D Image
  Transformers Help 3D Representation Learning?
Autoencoders as Cross-Modal Teachers: Can Pretrained 2D Image Transformers Help 3D Representation Learning?
Runpei Dong
Zekun Qi
Linfeng Zhang
Junbo Zhang
Jian‐Yuan Sun
Zheng Ge
Li Yi
Kaisheng Ma
ViT3DPC
86
90
0
16 Dec 2022
Learning 3D Representations from 2D Pre-trained Models via
  Image-to-Point Masked Autoencoders
Learning 3D Representations from 2D Pre-trained Models via Image-to-Point Masked Autoencoders
Renrui Zhang
Liuhui Wang
Yu Qiao
Peng Gao
Hongsheng Li
3DPC
77
133
0
13 Dec 2022
FacT: Factor-Tuning for Lightweight Adaptation on Vision Transformer
FacT: Factor-Tuning for Lightweight Adaptation on Vision Transformer
Shibo Jie
Zhi-Hong Deng
53
131
0
06 Dec 2022
Scaling & Shifting Your Features: A New Baseline for Efficient Model
  Tuning
Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning
Dongze Lian
Daquan Zhou
Jiashi Feng
Xinchao Wang
81
259
0
17 Oct 2022
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud
  Pre-training
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training
Renrui Zhang
Ziyu Guo
Rongyao Fang
Bingyan Zhao
Dong Wang
Yu Qiao
Hongsheng Li
Peng Gao
3DPC
250
257
0
28 May 2022
Monarch: Expressive Structured Matrices for Efficient and Accurate
  Training
Monarch: Expressive Structured Matrices for Efficient and Accurate Training
Tri Dao
Beidi Chen
N. Sohoni
Arjun D Desai
Michael Poli
Jessica Grogan
Alexander Liu
Aniruddh Rao
Atri Rudra
Christopher Ré
98
95
0
01 Apr 2022
Visual Prompt Tuning
Visual Prompt Tuning
Menglin Jia
Luming Tang
Bor-Chun Chen
Claire Cardie
Serge Belongie
Bharath Hariharan
Ser-Nam Lim
VLMVPVLM
153
1,627
0
23 Mar 2022
Masked Autoencoders for Point Cloud Self-supervised Learning
Masked Autoencoders for Point Cloud Self-supervised Learning
Yatian Pang
Wenxiao Wang
Francis E. H. Tay
Wen Liu
Yonghong Tian
Liuliang Yuan
3DPCViT
86
475
0
13 Mar 2022
Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point
  Modeling
Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling
Xumin Yu
Lulu Tang
Yongming Rao
Tiejun Huang
Jie Zhou
Jiwen Lu
3DPC
136
682
0
29 Nov 2021
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViTTPM
467
7,757
0
11 Nov 2021
BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based
  Masked Language-models
BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models
Elad Ben-Zaken
Shauli Ravfogel
Yoav Goldberg
168
1,223
0
18 Jun 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
579
4,077
0
18 Apr 2021
Offboard 3D Object Detection from Point Cloud Sequences
Offboard 3D Object Detection from Point Cloud Sequences
C. Qi
Yin Zhou
Mahyar Najibi
Pei Sun
Khoa T. Vo
Boyang Deng
Dragomir Anguelov
3DPC
83
177
0
08 Mar 2021
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Xiang Lisa Li
Percy Liang
248
4,261
0
01 Jan 2021
PCT: Point cloud transformer
PCT: Point cloud transformer
Meng-Hao Guo
Junxiong Cai
Zheng-Ning Liu
Tai-Jiang Mu
Ralph Robert Martin
Shimin Hu
ViT3DPC
148
1,616
0
17 Dec 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
820
42,055
0
28 May 2020
Deep Learning for 3D Point Clouds: A Survey
Deep Learning for 3D Point Clouds: A Survey
Yulan Guo
Hanyun Wang
Qingyong Hu
Hao Liu
Li Liu
Bennamoun
3DPC
96
1,676
0
27 Dec 2019
Revisiting Point Cloud Classification: A New Benchmark Dataset and
  Classification Model on Real-World Data
Revisiting Point Cloud Classification: A New Benchmark Dataset and Classification Model on Real-World Data
Mikaela Angelina Uy
Quang Pham
Binh-Son Hua
D. Nguyen
Sai-Kit Yeung
3DV3DPC
96
780
0
13 Aug 2019
KPConv: Flexible and Deformable Convolution for Point Clouds
KPConv: Flexible and Deformable Convolution for Point Clouds
Hugues Thomas
C. Qi
Jean-Emmanuel Deschaud
B. Marcotegui
F. Goulette
Leonidas Guibas
3DPC
169
2,536
0
18 Apr 2019
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
Shaoshuai Shi
Xiaogang Wang
Hongsheng Li
3DPC
182
2,410
0
11 Dec 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLMSSLSSeg
1.8K
95,114
0
11 Oct 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
242
3,473
0
09 Mar 2018
Dynamic Graph CNN for Learning on Point Clouds
Dynamic Graph CNN for Learning on Point Clouds
Yue Wang
Yongbin Sun
Ziwei Liu
Sanjay E. Sarma
M. Bronstein
Justin Solomon
GNN3DPC
257
6,149
0
24 Jan 2018
PointCNN: Convolution On $\mathcal{X}$-Transformed Points
PointCNN: Convolution On X\mathcal{X}X-Transformed Points
Yangyan Li
Rui Bu
Mingchao Sun
Wei Wu
Xinhan Di
Baoquan Chen
3DPC
233
2,448
0
23 Jan 2018
ShuffleNet: An Extremely Efficient Convolutional Neural Network for
  Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
AI4TS
141
6,878
0
04 Jul 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
713
132,199
0
12 Jun 2017
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH3DPC3DVPINN
493
14,320
0
02 Dec 2016
ShapeNet: An Information-Rich 3D Model Repository
ShapeNet: An Information-Rich 3D Model Repository
Angel X. Chang
Thomas Funkhouser
Leonidas Guibas
Pat Hanrahan
Qi-Xing Huang
...
Shuran Song
Hao Su
Jianxiong Xiao
L. Yi
Feng Yu
3DV
162
5,535
0
09 Dec 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
261
8,854
0
01 Oct 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.8K
77,196
0
18 May 2015
1