Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2503.07070
Cited By
PIED: Physics-Informed Experimental Design for Inverse Problems
10 March 2025
Apivich Hemachandra
Gregory Kang Ruey Lau
Szu Hui Ng
Bryan Kian Hsiang Low
PINN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"PIED: Physics-Informed Experimental Design for Inverse Problems"
27 / 27 papers shown
Title
Dipper: Diversity in Prompts for Producing Large Language Model Ensembles in Reasoning tasks
Gregory Kang Ruey Lau
Wenyang Hu
Diwen Liu
Jizhuo Chen
Szu Hui Ng
Bryan Kian Hsiang Low
LRM
AI4CE
122
8
0
12 Dec 2024
PINNACLE: PINN Adaptive ColLocation and Experimental points selection
Gregory Kang Ruey Lau
Apivich Hemachandra
See-Kiong Ng
K. H. Low
3DPC
116
20
0
11 Apr 2024
Batch Bayesian Optimization for Replicable Experimental Design
Zhongxiang Dai
Q. Nguyen
Sebastian Shenghong Tay
Daisuke Urano
Richalynn Leong
Bryan Kian Hsiang Low
Patrick Jaillet
37
5
0
02 Nov 2023
Quantum Bayesian Optimization
Zhongxiang Dai
Gregory Kang Ruey Lau
Arun Verma
Yao Shu
K. H. Low
Patrick Jaillet
58
11
0
09 Oct 2023
Training-Free Neural Active Learning with Initialization-Robustness Guarantees
Apivich Hemachandra
Zhongxiang Dai
Jasraj Singh
See-Kiong Ng
K. H. Low
AAML
87
7
0
07 Jun 2023
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
116
88
0
28 Feb 2023
Optimal design of large-scale nonlinear Bayesian inverse problems under model uncertainty
A. Alexanderian
R. Nicholson
N. Petra
64
11
0
08 Nov 2022
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
99
385
0
21 Jul 2022
Policy-Based Bayesian Experimental Design for Non-Differentiable Implicit Models
Vincent Lim
Ellen R. Novoseller
Jeffrey Ichnowski
Huang Huang
Ken Goldberg
OffRL
71
11
0
08 Mar 2022
Physics-informed neural networks for inverse problems in supersonic flows
Ameya Dilip Jagtap
Zhiping Mao
Nikolaus Adams
George Karniadakis
PINN
51
225
0
23 Feb 2022
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
129
48
0
03 Nov 2021
A novel meta-learning initialization method for physics-informed neural networks
Xu Liu
Xiaoya Zhang
Wei Peng
Weien Zhou
Wen Yao
AI4CE
73
76
0
23 Jul 2021
Efficient and Modular Implicit Differentiation
Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean-Philippe Vert
96
238
0
31 May 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
69
85
0
03 Mar 2021
An Information-Theoretic Framework for Unifying Active Learning Problems
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
53
18
0
19 Dec 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
141
928
0
28 Jul 2020
Physics-informed learning of governing equations from scarce data
Zhao Chen
Yang Liu
Hao Sun
PINN
AI4CE
109
398
0
05 May 2020
EikoNet: Solving the Eikonal equation with Deep Neural Networks
Jonathan D. Smith
Kamyar Azizzadenesheli
Zachary E. Ross
47
132
0
25 Mar 2020
Variational Bayesian Optimal Experimental Design
Adam Foster
M. Jankowiak
Eli Bingham
Paul Horsfall
Yee Whye Teh
Tom Rainforth
Noah D. Goodman
99
140
0
13 Mar 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
218
1,111
0
18 Feb 2019
A Tutorial on Bayesian Optimization
P. Frazier
GP
118
1,799
0
08 Jul 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
343
3,225
0
20 Jun 2018
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
256
2,239
0
08 Mar 2018
MINE: Mutual Information Neural Estimation
Mohamed Ishmael Belghazi
A. Baratin
Sai Rajeswar
Sherjil Ozair
Yoshua Bengio
Aaron Courville
R. Devon Hjelm
DRL
240
1,286
0
12 Jan 2018
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
154
1,100
0
01 Nov 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
232
2,913
0
14 Mar 2017
Fast Bayesian Optimal Experimental Design for Seismic Source Inversion
Q. Long
Mohammad Motamed
Raúl Tempone
54
51
0
27 Feb 2015
1