ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.05491
  4. Cited By
v1v2 (latest)

Statistical Deficiency for Task Inclusion Estimation

7 March 2025
Loïc Fosse
Frédéric Béchet
Benoit Favre
Géraldine Damnati
Gwénolé Lecorvé
Maxime Darrin
Philippe Formont
Pablo Piantanida
ArXiv (abs)PDFHTML

Papers citing "Statistical Deficiency for Task Inclusion Estimation"

46 / 46 papers shown
Title
Optimal Task Order for Continual Learning of Multiple Tasks
Optimal Task Order for Continual Learning of Multiple Tasks
Ziyan Li
Naoki Hiratani
59
1
0
05 Feb 2025
Task Arithmetic Through The Lens Of One-Shot Federated Learning
Task Arithmetic Through The Lens Of One-Shot Federated Learning
Zhixu Tao
I. Mason
Sanjeev R. Kulkarni
Xavier Boix
MoMeFedML
145
7
0
27 Nov 2024
Large Language Models Are Overparameterized Text Encoders
Large Language Models Are Overparameterized Text Encoders
Thennal D K
Tim Fischer
Chris Biemann
85
2
0
18 Oct 2024
On the Implicit Relation Between Low-Rank Adaptation and Differential Privacy
On the Implicit Relation Between Low-Rank Adaptation and Differential Privacy
Saber Malekmohammadi
G. Farnadi
236
2
0
26 Sep 2024
A deeper look at depth pruning of LLMs
A deeper look at depth pruning of LLMs
Shoaib Ahmed Siddiqui
Xin Dong
Greg Heinrich
Thomas Breuel
Jan Kautz
David M. Krueger
Pavlo Molchanov
74
11
0
23 Jul 2024
MetaGPT: Merging Large Language Models Using Model Exclusive Task
  Arithmetic
MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic
Yuyan Zhou
Liang Song
Bingning Wang
Weipeng Chen
MoMe
106
23
0
17 Jun 2024
Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance
Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance
Jiasheng Ye
Peiju Liu
Tianxiang Sun
Yunhua Zhou
Jun Zhan
Xipeng Qiu
150
76
0
25 Mar 2024
Ethos: Rectifying Language Models in Orthogonal Parameter Space
Ethos: Rectifying Language Models in Orthogonal Parameter Space
Lei Gao
Yue Niu
Tingting Tang
A. Avestimehr
Murali Annavaram
MU
83
12
0
13 Mar 2024
ShortGPT: Layers in Large Language Models are More Redundant Than You
  Expect
ShortGPT: Layers in Large Language Models are More Redundant Than You Expect
Xin Men
Mingyu Xu
Qingyu Zhang
Bingning Wang
Hongyu Lin
Yaojie Lu
Xianpei Han
Weipeng Chen
117
142
0
06 Mar 2024
Investigating semantic subspaces of Transformer sentence embeddings
  through linear structural probing
Investigating semantic subspaces of Transformer sentence embeddings through linear structural probing
Dmitry Nikolaev
Sebastian Padó
87
5
0
18 Oct 2023
Explainability for Large Language Models: A Survey
Explainability for Large Language Models: A Survey
Haiyan Zhao
Hanjie Chen
Fan Yang
Ninghao Liu
Huiqi Deng
Hengyi Cai
Shuaiqiang Wang
D. Yin
Jundong Li
LRM
108
472
0
02 Sep 2023
Instruction Tuning for Large Language Models: A Survey
Instruction Tuning for Large Language Models: A Survey
Shengyu Zhang
Linfeng Dong
Xiaoya Li
Sen Zhang
Xiaofei Sun
...
Jiwei Li
Runyi Hu
Tianwei Zhang
Leilei Gan
Guoyin Wang
LM&MA
119
611
0
21 Aug 2023
An Information-Theoretic Approach to Transferability in Task Transfer
  Learning
An Information-Theoretic Approach to Transferability in Task Transfer Learning
Yajie Bao
Yongni Li
Shao-Lun Huang
Lin Zhang
Lizhong Zheng
Amir Zamir
Leonidas Guibas
95
126
0
20 Dec 2022
Dataless Knowledge Fusion by Merging Weights of Language Models
Dataless Knowledge Fusion by Merging Weights of Language Models
Xisen Jin
Xiang Ren
Daniel Preoţiuc-Pietro
Pengxiang Cheng
FedMLMoMe
122
250
0
19 Dec 2022
On the Effectiveness of Parameter-Efficient Fine-Tuning
On the Effectiveness of Parameter-Efficient Fine-Tuning
Z. Fu
Haoran Yang
Anthony Man-Cho So
Wai Lam
Lidong Bing
Nigel Collier
80
162
0
28 Nov 2022
Fine-Tuning can Distort Pretrained Features and Underperform
  Out-of-Distribution
Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution
Ananya Kumar
Aditi Raghunathan
Robbie Jones
Tengyu Ma
Percy Liang
OODD
177
690
0
21 Feb 2022
Robust fine-tuning of zero-shot models
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
251
742
0
04 Sep 2021
Finetuned Language Models Are Zero-Shot Learners
Finetuned Language Models Are Zero-Shot Learners
Jason W. Wei
Maarten Bosma
Vincent Zhao
Kelvin Guu
Adams Wei Yu
Brian Lester
Nan Du
Andrew M. Dai
Quoc V. Le
ALMUQCV
385
3,813
0
03 Sep 2021
LoRA: Low-Rank Adaptation of Large Language Models
LoRA: Low-Rank Adaptation of Large Language Models
J. E. Hu
Yelong Shen
Phillip Wallis
Zeyuan Allen-Zhu
Yuanzhi Li
Shean Wang
Lu Wang
Weizhu Chen
OffRLAI4TSAI4CEALMAIMat
840
10,659
0
17 Jun 2021
How transfer learning impacts linguistic knowledge in deep NLP models?
How transfer learning impacts linguistic knowledge in deep NLP models?
Nadir Durrani
Hassan Sajjad
Fahim Dalvi
45
51
0
31 May 2021
Understanding Factuality in Abstractive Summarization with FRANK: A
  Benchmark for Factuality Metrics
Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics
Artidoro Pagnoni
Vidhisha Balachandran
Yulia Tsvetkov
HILM
295
313
0
27 Apr 2021
To Share or not to Share: Predicting Sets of Sources for Model Transfer
  Learning
To Share or not to Share: Predicting Sets of Sources for Model Transfer Learning
Lukas Lange
Jannik Strötgen
Heike Adel
Dietrich Klakow
82
12
0
16 Apr 2021
Probing BERT in Hyperbolic Spaces
Probing BERT in Hyperbolic Spaces
Boli Chen
Yao Fu
Guangwei Xu
Pengjun Xie
Chuanqi Tan
Mosha Chen
L. Jing
77
60
0
08 Apr 2021
OTCE: A Transferability Metric for Cross-Domain Cross-Task
  Representations
OTCE: A Transferability Metric for Cross-Domain Cross-Task Representations
Yang Tan
Yang Li
Shao-Lun Huang
OTOODOODD
69
73
0
25 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
1.1K
30,116
0
26 Feb 2021
On the Interplay Between Fine-tuning and Sentence-level Probing for
  Linguistic Knowledge in Pre-trained Transformers
On the Interplay Between Fine-tuning and Sentence-level Probing for Linguistic Knowledge in Pre-trained Transformers
Marius Mosbach
A. Khokhlova
Michael A. Hedderich
Dietrich Klakow
54
46
0
06 Oct 2020
Measuring Robustness to Natural Distribution Shifts in Image
  Classification
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
134
549
0
01 Jul 2020
Understanding and Improving Information Transfer in Multi-Task Learning
Understanding and Improving Information Transfer in Multi-Task Learning
Sen Wu
Hongyang R. Zhang
Christopher Ré
77
158
0
02 May 2020
UnifiedQA: Crossing Format Boundaries With a Single QA System
UnifiedQA: Crossing Format Boundaries With a Single QA System
Daniel Khashabi
Sewon Min
Tushar Khot
Ashish Sabharwal
Oyvind Tafjord
Peter Clark
Hannaneh Hajishirzi
234
743
0
02 May 2020
What Happens To BERT Embeddings During Fine-tuning?
What Happens To BERT Embeddings During Fine-tuning?
Amil Merchant
Elahe Rahimtoroghi
Ellie Pavlick
Ian Tenney
117
189
0
29 Apr 2020
A unifying mutual information view of metric learning: cross-entropy vs.
  pairwise losses
A unifying mutual information view of metric learning: cross-entropy vs. pairwise losses
Malik Boudiaf
Jérôme Rony
Imtiaz Masud Ziko
Eric Granger
M. Pedersoli
Pablo Piantanida
Ismail Ben Ayed
SSL
115
160
0
19 Mar 2020
A Primer in BERTology: What we know about how BERT works
A Primer in BERTology: What we know about how BERT works
Anna Rogers
Olga Kovaleva
Anna Rumshisky
OffRL
161
1,511
0
27 Feb 2020
A Theory of Usable Information Under Computational Constraints
A Theory of Usable Information Under Computational Constraints
Yilun Xu
Shengjia Zhao
Jiaming Song
Russell Stewart
Stefano Ermon
105
175
0
25 Feb 2020
On the Estimation of Information Measures of Continuous Distributions
On the Estimation of Information Measures of Continuous Distributions
Georg Pichler
Pablo Piantanida
Günther Koliander
71
13
0
07 Feb 2020
Gradient Surgery for Multi-Task Learning
Gradient Surgery for Multi-Task Learning
Tianhe Yu
Saurabh Kumar
Abhishek Gupta
Sergey Levine
Karol Hausman
Chelsea Finn
200
1,238
0
19 Jan 2020
BERTScore: Evaluating Text Generation with BERT
BERTScore: Evaluating Text Generation with BERT
Tianyi Zhang
Varsha Kishore
Felix Wu
Kilian Q. Weinberger
Yoav Artzi
678
5,897
0
21 Apr 2019
A Principled Approach for Learning Task Similarity in Multitask Learning
A Principled Approach for Learning Task Similarity in Multitask Learning
Changjian Shui
Mahdieh Abbasi
Louis-Émile Robitaille
Boyu Wang
Christian Gagné
105
58
0
21 Mar 2019
Task2Vec: Task Embedding for Meta-Learning
Task2Vec: Task Embedding for Meta-Learning
Alessandro Achille
Michael Lam
Rahul Tewari
Avinash Ravichandran
Subhransu Maji
Charless C. Fowlkes
Stefano Soatto
Pietro Perona
SSL
83
317
0
10 Feb 2019
Multi-Task Learning as Multi-Objective Optimization
Multi-Task Learning as Multi-Objective Optimization
Ozan Sener
V. Koltun
248
1,299
0
10 Oct 2018
Taskonomy: Disentangling Task Transfer Learning
Taskonomy: Disentangling Task Transfer Learning
Amir Zamir
Alexander Sax
Bokui (William) Shen
Leonidas Guibas
Jitendra Malik
Silvio Savarese
143
1,227
0
23 Apr 2018
A Survey on Multi-Task Learning
A Survey on Multi-Task Learning
Yu Zhang
Qiang Yang
AIMat
638
2,270
0
25 Jul 2017
Emergence of Invariance and Disentanglement in Deep Representations
Emergence of Invariance and Disentanglement in Deep Representations
Alessandro Achille
Stefano Soatto
OODDRL
166
480
0
05 Jun 2017
Understanding intermediate layers using linear classifier probes
Understanding intermediate layers using linear classifier probes
Guillaume Alain
Yoshua Bengio
FAtt
202
959
0
05 Oct 2016
The Benefit of Multitask Representation Learning
The Benefit of Multitask Representation Learning
Andreas Maurer
Massimiliano Pontil
Bernardino Romera-Paredes
SSL
153
377
0
23 May 2015
A Model of Inductive Bias Learning
A Model of Inductive Bias Learning
Jonathan Baxter
137
1,218
0
01 Jun 2011
Information, Divergence and Risk for Binary Experiments
Information, Divergence and Risk for Binary Experiments
Mark D. Reid
Robert C. Williamson
143
231
0
05 Jan 2009
1