ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.18197
  4. Cited By
VCT: Training Consistency Models with Variational Noise Coupling

VCT: Training Consistency Models with Variational Noise Coupling

25 February 2025
Gianluigi Silvestri
L. Ambrogioni
Chieh-Hsin Lai
Yuhta Takida
Yuki Mitsufuji
ArXivPDFHTML

Papers citing "VCT: Training Consistency Models with Variational Noise Coupling"

50 / 50 papers shown
Title
Training Latent Diffusion Models with Interacting Particle Algorithms
Training Latent Diffusion Models with Interacting Particle Algorithms
Tim Y. J. Wang
Juan Kuntz
O. Deniz Akyildiz
61
0
0
18 May 2025
The Curse of Conditions: Analyzing and Improving Optimal Transport for Conditional Flow-Based Generation
Ho Kei Cheng
Alexander Schwing
OT
95
1
0
13 Mar 2025
Truncated Consistency Models
Truncated Consistency Models
Sangyun Lee
Yilun Xu
Tomas Geffner
Giulia Fanti
Karsten Kreis
Arash Vahdat
Weili Nie
108
3
0
18 Oct 2024
Simple ReFlow: Improved Techniques for Fast Flow Models
Simple ReFlow: Improved Techniques for Fast Flow Models
Beomsu Kim
Yu-Guan Hsieh
Michal Klein
Marco Cuturi
Jong Chul Ye
Bahjat Kawar
James Thornton
VLM
72
10
0
10 Oct 2024
Consistency Flow Matching: Defining Straight Flows with Velocity
  Consistency
Consistency Flow Matching: Defining Straight Flows with Velocity Consistency
Ling Yang
Zixiang Zhang
Zhilong Zhang
Xingchao Liu
Minkai Xu
Wentao Zhang
Chenlin Meng
Stefano Ermon
Bin Cui
58
21
0
02 Jul 2024
Consistency Models Made Easy
Consistency Models Made Easy
Zhengyang Geng
Ashwini Pokle
William Luo
Justin Lin
J. Zico Kolter
79
29
0
20 Jun 2024
Improving Consistency Models with Generator-Augmented Flows
Improving Consistency Models with Generator-Augmented Flows
Thibaut Issenhuth
Sangchul Lee
Jean-Yves Franceschi
Jean-Yves Franceschi
Chansoo Kim
Alain Rakotomamonjy
29
1
0
13 Jun 2024
EM Distillation for One-step Diffusion Models
EM Distillation for One-step Diffusion Models
Sirui Xie
Zhisheng Xiao
Diederik P. Kingma
Tingbo Hou
Ying Nian Wu
Kevin Patrick Murphy
Tim Salimans
Ben Poole
Ruiqi Gao
VLM
DiffM
64
28
0
27 May 2024
Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling
Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling
Grigory Bartosh
Dmitry Vetrov
C. A. Naesseth
DiffM
65
16
0
19 Apr 2024
Score identity Distillation: Exponentially Fast Distillation of
  Pretrained Diffusion Models for One-Step Generation
Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation
Mingyuan Zhou
Huangjie Zheng
Zhendong Wang
Mingzhang Yin
Hai Huang
DiffM
64
62
0
05 Apr 2024
Multistep Consistency Models
Multistep Consistency Models
Jonathan Heek
Emiel Hoogeboom
Tim Salimans
40
36
0
11 Mar 2024
Analyzing and Improving the Training Dynamics of Diffusion Models
Analyzing and Improving the Training Dynamics of Diffusion Models
Tero Karras
M. Aittala
J. Lehtinen
Janne Hellsten
Timo Aila
S. Laine
99
189
0
05 Dec 2023
One-step Diffusion with Distribution Matching Distillation
One-step Diffusion with Distribution Matching Distillation
Tianwei Yin
Michael Gharbi
Richard Zhang
Eli Shechtman
Frédo Durand
William T. Freeman
Taesung Park
DiffM
154
261
0
30 Nov 2023
DiffEnc: Variational Diffusion with a Learned Encoder
DiffEnc: Variational Diffusion with a Learned Encoder
Beatrix M. G. Nielsen
Anders Christensen
Andrea Dittadi
Ole Winther
DiffM
61
13
0
30 Oct 2023
Improved Techniques for Training Consistency Models
Improved Techniques for Training Consistency Models
Yang Song
Prafulla Dhariwal
68
173
0
22 Oct 2023
Neural Diffusion Models
Neural Diffusion Models
Grigory Bartosh
Dmitry Vetrov
C. A. Naesseth
DiffM
44
10
0
12 Oct 2023
Stochastic interpolants with data-dependent couplings
Stochastic interpolants with data-dependent couplings
M. S. Albergo
Mark Goldstein
Nicholas M. Boffi
Rajesh Ranganath
Eric Vanden-Eijnden
OT
50
32
0
05 Oct 2023
Consistency Trajectory Models: Learning Probability Flow ODE Trajectory
  of Diffusion
Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion
Dongjun Kim
Chieh-Hsin Lai
Wei-Hsiang Liao
Naoki Murata
Yuhta Takida
Toshimitsu Uesaka
Yutong He
Yuki Mitsufuji
Stefano Ermon
DiffM
70
189
0
01 Oct 2023
Diff-Instruct: A Universal Approach for Transferring Knowledge From
  Pre-trained Diffusion Models
Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models
Weijian Luo
Tianyang Hu
Shifeng Zhang
Jiacheng Sun
Zhenguo Li
Zhihua Zhang
64
129
0
29 May 2023
Multisample Flow Matching: Straightening Flows with Minibatch Couplings
Multisample Flow Matching: Straightening Flows with Minibatch Couplings
Aram-Alexandre Pooladian
Heli Ben-Hamu
Carles Domingo-Enrich
Brandon Amos
Y. Lipman
Ricky T. Q. Chen
75
144
0
28 Apr 2023
TRACT: Denoising Diffusion Models with Transitive Closure
  Time-Distillation
TRACT: Denoising Diffusion Models with Transitive Closure Time-Distillation
David Berthelot
Arnaud Autef
Jierui Lin
Dian Ang Yap
Shuangfei Zhai
Siyuan Hu
Daniel Zheng
Walter Talbot
Eric Gu
DiffM
68
90
0
07 Mar 2023
Consistency Models
Consistency Models
Yang Song
Prafulla Dhariwal
Mark Chen
Ilya Sutskever
VLM
DiffM
97
946
0
02 Mar 2023
PFGM++: Unlocking the Potential of Physics-Inspired Generative Models
PFGM++: Unlocking the Potential of Physics-Inspired Generative Models
Yilun Xu
Ziming Liu
Yonglong Tian
Shangyuan Tong
Max Tegmark
Tommi Jaakkola
AI4CE
DiffM
54
72
0
08 Feb 2023
Improving and generalizing flow-based generative models with minibatch
  optimal transport
Improving and generalizing flow-based generative models with minibatch optimal transport
Alexander Tong
Kilian Fatras
Nikolay Malkin
G. Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Guy Wolf
Yoshua Bengio
OOD
DiffM
OT
95
288
0
01 Feb 2023
Minimizing Trajectory Curvature of ODE-based Generative Models
Minimizing Trajectory Curvature of ODE-based Generative Models
Sangyun Lee
Beomsu Kim
Jong Chul Ye
83
60
0
27 Jan 2023
Fast Sampling of Diffusion Models via Operator Learning
Fast Sampling of Diffusion Models via Operator Learning
Hongkai Zheng
Weili Nie
Arash Vahdat
Kamyar Azizzadenesheli
Anima Anandkumar
DiffM
90
144
0
24 Nov 2022
Flow Matching for Generative Modeling
Flow Matching for Generative Modeling
Y. Lipman
Ricky T. Q. Chen
Heli Ben-Hamu
Maximilian Nickel
Matt Le
OOD
174
1,274
0
06 Oct 2022
Flow Straight and Fast: Learning to Generate and Transfer Data with
  Rectified Flow
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
Xingchao Liu
Chengyue Gong
Qiang Liu
OOD
166
988
0
07 Sep 2022
DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling
  in Around 10 Steps
DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps
Cheng Lu
Yuhao Zhou
Fan Bao
Jianfei Chen
Chongxuan Li
Jun Zhu
DiffM
174
1,403
0
02 Jun 2022
Elucidating the Design Space of Diffusion-Based Generative Models
Elucidating the Design Space of Diffusion-Based Generative Models
Tero Karras
M. Aittala
Timo Aila
S. Laine
DiffM
156
1,952
0
01 Jun 2022
Video Diffusion Models
Video Diffusion Models
Jonathan Ho
Tim Salimans
Alexey A. Gritsenko
William Chan
Mohammad Norouzi
David J. Fleet
DiffM
VGen
163
1,597
0
07 Apr 2022
Pseudo Numerical Methods for Diffusion Models on Manifolds
Pseudo Numerical Methods for Diffusion Models on Manifolds
Luping Liu
Yi Ren
Zhijie Lin
Zhou Zhao
DiffM
90
644
0
20 Feb 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
351
15,373
0
20 Dec 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
45
677
0
10 Jun 2021
Gotta Go Fast When Generating Data with Score-Based Models
Gotta Go Fast When Generating Data with Score-Based Models
Alexia Jolicoeur-Martineau
Ke Li
Remi Piche-Taillefer
Tal Kachman
Ioannis Mitliagkas
DiffM
68
223
0
28 May 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
178
7,765
0
11 May 2021
Preventing Oversmoothing in VAE via Generalized Variance
  Parameterization
Preventing Oversmoothing in VAE via Generalized Variance Parameterization
Yuhta Takida
Wei-Hsiang Liao
Chieh-Hsin Lai
Toshimitsu Uesaka
Shusuke Takahashi
Yuki Mitsufuji
DRL
56
14
0
17 Feb 2021
Knowledge Distillation in Iterative Generative Models for Improved
  Sampling Speed
Knowledge Distillation in Iterative Generative Models for Improved Sampling Speed
Eric Luhman
Troy Luhman
DiffM
224
274
0
07 Jan 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
292
6,409
0
26 Nov 2020
A Contrastive Learning Approach for Training Variational Autoencoder
  Priors
A Contrastive Learning Approach for Training Variational Autoencoder Priors
J. Aneja
Alex Schwing
Jan Kautz
Arash Vahdat
DRL
59
84
0
06 Oct 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
208
7,294
0
06 Oct 2020
DiffWave: A Versatile Diffusion Model for Audio Synthesis
DiffWave: A Versatile Diffusion Model for Audio Synthesis
Zhifeng Kong
Ming-Yu Liu
Jiaji Huang
Kexin Zhao
Bryan Catanzaro
DiffM
BDL
110
1,449
0
21 Sep 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
482
17,888
0
19 Jun 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
321
10,591
0
17 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
181
1,687
0
05 Dec 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
529
10,540
0
12 Dec 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
341
5,081
0
19 Jun 2018
Distribution Matching in Variational Inference
Distribution Matching in Variational Inference
Mihaela Rosca
Balaji Lakshminarayanan
S. Mohamed
GAN
CML
DRL
56
98
0
19 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
246
8,856
0
25 Aug 2017
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
252
6,887
0
12 Mar 2015
1