ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.09341
  4. Cited By
Neural Spatiotemporal Point Processes: Trends and Challenges

Neural Spatiotemporal Point Processes: Trends and Challenges

13 February 2025
Sumantrak Mukherjee
Mouad Elhamdi
George Mohler
David Selby
Yao Xie
Sebastian Vollmer
Gerrit Grossmann
    AI4TS
ArXivPDFHTML

Papers citing "Neural Spatiotemporal Point Processes: Trends and Challenges"

29 / 29 papers shown
Title
Deep spatio-temporal point processes: Advances and new directions
Deep spatio-temporal point processes: Advances and new directions
Xiuyuan Cheng
Zheng Dong
Yao Xie
AI4TS
46
0
0
08 Apr 2025
Unlocking Point Processes through Point Set Diffusion
Unlocking Point Processes through Point Set Diffusion
David Lüdke
Enric Rabasseda Raventós
Marcel Kollovieh
Stephan Günnemann
DiffM
55
3
0
29 Oct 2024
ContiFormer: Continuous-Time Transformer for Irregular Time Series
  Modeling
ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling
Yuqi Chen
Kan Ren
Yansen Wang
Yuchen Fang
Weiwei Sun
Dongsheng Li
AI4TS
96
34
0
16 Feb 2024
Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event
  Prediction
Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event Prediction
G. Jin
Lingbo Liu
Fuxian Li
Jincai Huang
AI4TS
GNN
3DPC
42
35
0
15 Nov 2023
Add and Thin: Diffusion for Temporal Point Processes
Add and Thin: Diffusion for Temporal Point Processes
David Lüdke
Marin Bilovs
Oleksandr Shchur
Marten Lienen
Stephan Günnemann
DiffM
56
17
0
02 Nov 2023
Automatic Integration for Spatiotemporal Neural Point Processes
Automatic Integration for Spatiotemporal Neural Point Processes
Zihao Zhou
Rose Yu
3DPC
AI4TS
48
5
0
09 Oct 2023
Integration-free Training for Spatio-temporal Multimodal Covariate Deep
  Kernel Point Processes
Integration-free Training for Spatio-temporal Multimodal Covariate Deep Kernel Point Processes
Yixuan Zhang
Quyu Kong
Feng Zhou
37
4
0
09 Oct 2023
EasyTPP: Towards Open Benchmarking Temporal Point Processes
EasyTPP: Towards Open Benchmarking Temporal Point Processes
Siqiao Xue
Xiaoming Shi
Zhixuan Chu
Yan Wang
Hongyan Hao
...
Chenyuan Pan
James Y. Zhang
Qingsong Wen
Junqing Zhou
Hongyuan Mei
AI4TS
60
31
0
16 Jul 2023
Deep graph kernel point processes
Deep graph kernel point processes
Zheng Dong
Matthew Repasky
Xiuyuan Cheng
Yao Xie
3DPC
70
3
0
20 Jun 2023
Spatio-temporal Diffusion Point Processes
Spatio-temporal Diffusion Point Processes
Yuan Yuan
Jingtao Ding
Chenyang Shao
Depeng Jin
Yong Li
DiffM
49
46
0
21 May 2023
Spatio-temporal point processes with deep non-stationary kernels
Spatio-temporal point processes with deep non-stationary kernels
Zheng Dong
Xiuyuan Cheng
Yao Xie
BDL
AI4TS
46
9
0
21 Nov 2022
Beyond Hawkes: Neural Multi-event Forecasting on Spatio-temporal Point
  Processes
Beyond Hawkes: Neural Multi-event Forecasting on Spatio-temporal Point Processes
Negar Erfanian
Santiago Segarra
Maarten V. de Hoop
AI4TS
43
1
0
05 Nov 2022
Exploring Generative Neural Temporal Point Process
Exploring Generative Neural Temporal Point Process
Haitao Lin
Lirong Wu
Guojiang Zhao
Pai Liu
Stan Z. Li
DiffM
41
27
0
03 Aug 2022
Statistical Deep Learning for Spatial and Spatio-Temporal Data
Statistical Deep Learning for Spatial and Spatio-Temporal Data
C. Wikle
A. Zammit‐Mangion
BDL
119
47
0
05 Jun 2022
Neural Point Process for Learning Spatiotemporal Event Dynamics
Neural Point Process for Learning Spatiotemporal Event Dynamics
Zihao Zhou
Xingyi Yang
Ryan Rossi
Handong Zhao
Rose Yu
3DPC
58
32
0
12 Dec 2021
Neural Flows: Efficient Alternative to Neural ODEs
Neural Flows: Efficient Alternative to Neural ODEs
Marin Bilovs
Johanna Sommer
Syama Sundar Rangapuram
Tim Januschowski
Stephan Günnemann
AI4TS
54
72
0
25 Oct 2021
An Empirical Study: Extensive Deep Temporal Point Process
An Empirical Study: Extensive Deep Temporal Point Process
Haitao Lin
Cheng Tan
Lirong Wu
Zhangyang Gao
Stan. Z. Li
AI4TS
49
13
0
19 Oct 2021
Understanding the Spread of COVID-19 Epidemic: A Spatio-Temporal Point
  Process View
Understanding the Spread of COVID-19 Epidemic: A Spatio-Temporal Point Process View
Shuang Li
Lu Wang
Xinyun Chen
Yixiang Fang
Yan Song
26
8
0
24 Jun 2021
Neural Spectral Marked Point Processes
Neural Spectral Marked Point Processes
Shixiang Zhu
Haoyun Wang
Zheng Dong
Xiuyuan Cheng
Yao Xie
37
15
0
20 Jun 2021
Spatio-Temporal Point Processes with Attention for Traffic Congestion
  Event Modeling
Spatio-Temporal Point Processes with Attention for Traffic Congestion Event Modeling
Shixiang Zhu
Ruyi Ding
Minghe Zhang
Pascal Van Hentenryck
Yao Xie
3DPC
28
22
0
15 May 2020
Transformer Hawkes Process
Transformer Hawkes Process
Simiao Zuo
Haoming Jiang
Zichong Li
T. Zhao
H. Zha
AI4TS
63
292
0
21 Feb 2020
Intensity-Free Learning of Temporal Point Processes
Intensity-Free Learning of Temporal Point Processes
Oleksandr Shchur
Marin Bilos
Stephan Günnemann
AI4TS
54
172
0
26 Sep 2019
Deep Mixture Point Processes: Spatio-temporal Event Prediction with Rich
  Contextual Information
Deep Mixture Point Processes: Spatio-temporal Event Prediction with Rich Contextual Information
Maya Okawa
Tomoharu Iwata
Takeshi Kurashima
Yusuke Tanaka
Hiroyuki Toda
N. Ueda
AI4TS
43
61
0
21 Jun 2019
Neural Jump Stochastic Differential Equations
Neural Jump Stochastic Differential Equations
Junteng Jia
Austin R. Benson
BDL
57
225
0
24 May 2019
Fully Neural Network based Model for General Temporal Point Processes
Fully Neural Network based Model for General Temporal Point Processes
T. Omi
N. Ueda
Kazuyuki Aihara
BDL
AI4TS
45
178
0
23 May 2019
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
346
5,081
0
19 Jun 2018
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
636
130,942
0
12 Jun 2017
Wasserstein Learning of Deep Generative Point Process Models
Wasserstein Learning of Deep Generative Point Process Models
Shuai Xiao
Mehrdad Farajtabar
X. Ye
Junchi Yan
Le Song
H. Zha
DiffM
51
170
0
23 May 2017
Quantifying the vanishing gradient and long distance dependency problem
  in recursive neural networks and recursive LSTMs
Quantifying the vanishing gradient and long distance dependency problem in recursive neural networks and recursive LSTMs
Phong Le
Willem H. Zuidema
45
59
0
01 Mar 2016
1