ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.08665
8
21

Spatio-Temporal Point Processes with Attention for Traffic Congestion Event Modeling

15 May 2020
Shixiang Zhu
Ruyi Ding
Minghe Zhang
Pascal Van Hentenryck
Yao Xie
    3DPC
ArXivPDFHTML
Abstract

We present a novel framework for modeling traffic congestion events over road networks. Using multi-modal data by combining count data from traffic sensors with police reports that report traffic incidents, we aim to capture two types of triggering effect for congestion events. Current traffic congestion at one location may cause future congestion over the road network, and traffic incidents may cause spread traffic congestion. To model the non-homogeneous temporal dependence of the event on the past, we use a novel attention-based mechanism based on neural networks embedding for point processes. To incorporate the directional spatial dependence induced by the road network, we adapt the "tail-up" model from the context of spatial statistics to the traffic network setting. We demonstrate our approach's superior performance compared to the state-of-the-art methods for both synthetic and real data.

View on arXiv
Comments on this paper