Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2502.06601
Cited By
Amortized In-Context Bayesian Posterior Estimation
10 February 2025
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Amortized In-Context Bayesian Posterior Estimation"
26 / 26 papers shown
Title
Effortless, Simulation-Efficient Bayesian Inference using Tabular Foundation Models
Julius Vetter
Manuel Gloeckler
Daniel Gedon
Jakob H Macke
74
0
0
24 Apr 2025
Compositional Score Modeling for Simulation-based Inference
Tomas Geffner
George Papamakarios
A. Mnih
79
27
0
28 Sep 2022
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
65
15
0
23 Sep 2022
What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
Shivam Garg
Dimitris Tsipras
Percy Liang
Gregory Valiant
95
479
0
01 Aug 2022
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second
Noah Hollmann
Samuel G. Müller
Katharina Eggensperger
Frank Hutter
60
283
0
05 Jul 2022
Transformers Can Do Bayesian Inference
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
BDL
UQCV
62
160
0
20 Dec 2021
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
63
107
0
30 Nov 2021
Kernel Identification Through Transformers
F. Simpson
Ian Davies
V. Lalchand
A. Vullo
N. Durrande
C. Rasmussen
27
10
0
15 Jun 2021
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
262
6,293
0
26 Nov 2020
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
294
1,950
0
11 Apr 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
133
1,662
0
05 Dec 2019
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
103
834
0
04 Nov 2019
Convolutional Conditional Neural Processes
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard Turner
BDL
53
164
0
29 Oct 2019
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
77
436
0
17 Jan 2019
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
90
1,043
0
18 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
203
3,110
0
09 Jul 2018
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCV
BDL
48
688
0
04 Jul 2018
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas Griffiths
BDL
63
505
0
26 Jan 2018
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
199
4,035
0
16 Nov 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
430
129,831
0
12 Jun 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
754
11,793
0
09 Mar 2017
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
286
7,286
0
13 Jun 2016
Recognition Networks for Approximate Inference in BN20 Networks
Q. Morris
BDL
106
27
0
10 Jan 2013
Expectation Propagation for approximate Bayesian inference
T. Minka
101
1,906
0
10 Jan 2013
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
191
2,605
0
29 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
131
4,275
0
18 Nov 2011
1