Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2502.01701
Cited By
Learning with Differentially Private (Sliced) Wasserstein Gradients
3 February 2025
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning with Differentially Private (Sliced) Wasserstein Gradients"
10 / 60 papers shown
Title
Finite Sample Differentially Private Confidence Intervals
Vishesh Karwa
Salil P. Vadhan
55
193
0
10 Nov 2017
Wasserstein Auto-Encoders
Ilya O. Tolstikhin
Olivier Bousquet
Sylvain Gelly
B. Schölkopf
DRL
113
1,055
0
05 Nov 2017
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
191
6,109
0
01 Jul 2016
Efficient Per-Example Gradient Computations
Ian Goodfellow
236
75
0
07 Oct 2015
Optimal Transport for Domain Adaptation
Nicolas Courty
Rémi Flamary
D. Tuia
A. Rakotomamonjy
OT
OOD
122
1,119
0
02 Jul 2015
Privacy and Statistical Risk: Formalisms and Minimax Bounds
Rina Foygel Barber
John C. Duchi
PILM
65
92
0
15 Dec 2014
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
181
1,984
0
11 Dec 2014
RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response
Ulfar Erlingsson
Vasyl Pihur
Aleksandra Korolova
92
1,987
0
25 Jul 2014
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
192
4,251
0
04 Jun 2013
A statistical framework for differential privacy
Larry A. Wasserman
Shuheng Zhou
100
485
0
16 Nov 2008
Previous
1
2