ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.4451
45
91

Privacy and Statistical Risk: Formalisms and Minimax Bounds

15 December 2014
Rina Foygel Barber
John C. Duchi
    PILM
ArXivPDFHTML
Abstract

We explore and compare a variety of definitions for privacy and disclosure limitation in statistical estimation and data analysis, including (approximate) differential privacy, testing-based definitions of privacy, and posterior guarantees on disclosure risk. We give equivalence results between the definitions, shedding light on the relationships between different formalisms for privacy. We also take an inferential perspective, where---building off of these definitions---we provide minimax risk bounds for several estimation problems, including mean estimation, estimation of the support of a distribution, and nonparametric density estimation. These bounds highlight the statistical consequences of different definitions of privacy and provide a second lens for evaluating the advantages and disadvantages of different techniques for disclosure limitation.

View on arXiv
Comments on this paper