ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.06148
  4. Cited By
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training

From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training

10 January 2025
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
    OffRL
ArXiv (abs)PDFHTML

Papers citing "From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training"

50 / 54 papers shown
Title
RNE: a plug-and-play framework for diffusion density estimation and inference-time control
RNE: a plug-and-play framework for diffusion density estimation and inference-time control
Jiajun He
Jose Miguel Hernandez-Lobato
Yuanqi Du
Francisco Vargas
100
0
0
06 Jun 2025
Adaptive Destruction Processes for Diffusion Samplers
Adaptive Destruction Processes for Diffusion Samplers
Timofei Gritsaev
Nikita Morozov
Kirill Tamogashev
D. Tiapkin
S. Samsonov
A. Naumov
Dmitry Vetrov
Nikolay Malkin
60
0
0
02 Jun 2025
On scalable and efficient training of diffusion samplers
On scalable and efficient training of diffusion samplers
Minkyu Kim
Kiyoung Seong
Dongyeop Woo
SungSoo Ahn
Minsu Kim
DiffM
150
0
0
26 May 2025
Energy-based generator matching: A neural sampler for general state space
Energy-based generator matching: A neural sampler for general state space
Dongyeop Woo
Minsu Kim
Minkyu Kim
Kiyoung Seong
SungSoo Ahn
97
0
0
26 May 2025
MetaGFN: Exploring Distant Modes with Adapted Metadynamics for Continuous GFlowNets
MetaGFN: Exploring Distant Modes with Adapted Metadynamics for Continuous GFlowNets
Dominic Phillips
F. Cipcigan
107
4
0
28 Aug 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OTDiffM
89
11
0
10 Jul 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
146
27
0
11 Jun 2024
Amortizing intractable inference in diffusion models for vision, language, and control
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
191
32
0
31 May 2024
Discrete Probabilistic Inference as Control in Multi-path Environments
Discrete Probabilistic Inference as Control in Multi-path Environments
T. Deleu
Padideh Nouri
Nikolay Malkin
Doina Precup
Yoshua Bengio
183
31
0
15 Feb 2024
Particle Denoising Diffusion Sampler
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
135
30
0
09 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
112
58
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
239
28
0
07 Feb 2024
Improving Gradient-guided Nested Sampling for Posterior Inference
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
Yoshua Bengio
Y. Hezaveh
Laurence Perreault Levasseur
BDL
109
11
0
06 Dec 2023
Bespoke Solvers for Generative Flow Models
Bespoke Solvers for Generative Flow Models
Neta Shaul
Juan C. Pérez
Ricky T. Q. Chen
Ali K. Thabet
Albert Pumarola
Y. Lipman
81
27
0
29 Oct 2023
Generative Fractional Diffusion Models
Generative Fractional Diffusion Models
Gabriel Nobis
Maximilian Springenberg
Marco Aversa
Michael Detzel
Rembert Daems
...
Tolga Birdal
Manfred Opper
Christoph Knochenhauer
Luis Oala
Wojciech Samek
DiffM
76
6
0
26 Oct 2023
Towards equilibrium molecular conformation generation with GFlowNets
Towards equilibrium molecular conformation generation with GFlowNets
Alexandra Volokhova
Michal Koziarski
Alex Hernández-García
Cheng-Hao Liu
Santiago Miret
Pablo Lemos
Luca Thiede
Zichao Yan
Alán Aspuru-Guzik
Yoshua Bengio
75
11
0
20 Oct 2023
Variational Inference for SDEs Driven by Fractional Noise
Variational Inference for SDEs Driven by Fractional Noise
Rembert Daems
Manfred Opper
Guillaume Crevecoeur
Tolga Birdal
99
6
0
19 Oct 2023
Efficient Integrators for Diffusion Generative Models
Efficient Integrators for Diffusion Generative Models
Kushagra Pandey
Maja R. Rudolph
Stephan Mandt
DiffM
68
11
0
11 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
125
49
0
04 Oct 2023
Generative Flow Networks: a Markov Chain Perspective
Generative Flow Networks: a Markov Chain Perspective
T. Deleu
Yoshua Bengio
BDL
92
9
0
04 Jul 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
121
65
0
03 Jul 2023
Denoising Diffusion Samplers
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
86
91
0
27 Feb 2023
Better Training of GFlowNets with Local Credit and Incomplete
  Trajectories
Better Training of GFlowNets with Local Credit and Incomplete Trajectories
L. Pan
Nikolay Malkin
Dinghuai Zhang
Yoshua Bengio
108
72
0
03 Feb 2023
A theory of continuous generative flow networks
A theory of continuous generative flow networks
Salem Lahlou
T. Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernández-García
Léna Néhale Ezzine
Yoshua Bengio
Nikolay Malkin
AI4CE
146
93
0
30 Jan 2023
Learning Interpolations between Boltzmann Densities
Learning Interpolations between Boltzmann Densities
Bálint Máté
Franccois Fleuret
137
29
0
18 Jan 2023
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
154
97
0
02 Nov 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
231
89
0
02 Oct 2022
Learning GFlowNets from partial episodes for improved convergence and
  stability
Learning GFlowNets from partial episodes for improved convergence and stability
Kanika Madan
Jarrid Rector-Brooks
Maksym Korablyov
Emmanuel Bengio
Moksh Jain
A. Nica
Tom Bosc
Yoshua Bengio
Nikolay Malkin
100
102
0
26 Sep 2022
Score-Based Diffusion meets Annealed Importance Sampling
Score-Based Diffusion meets Annealed Importance Sampling
Arnaud Doucet
Will Grathwohl
A. G. Matthews
Heiko Strathmann
DiffM
117
46
0
16 Aug 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
136
95
0
03 Aug 2022
Fast Sampling of Diffusion Models with Exponential Integrator
Fast Sampling of Diffusion Models with Exponential Integrator
Qinsheng Zhang
Yongxin Chen
DiffM
114
439
0
29 Apr 2022
Trajectory balance: Improved credit assignment in GFlowNets
Trajectory balance: Improved credit assignment in GFlowNets
Nikolay Malkin
Moksh Jain
Emmanuel Bengio
Chen Sun
Yoshua Bengio
272
186
0
31 Jan 2022
Continual Repeated Annealed Flow Transport Monte Carlo
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
121
53
0
31 Jan 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
615
15,855
0
20 Dec 2021
Interpolating between BSDEs and PINNs: deep learning for elliptic and
  parabolic boundary value problems
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
Nikolas Nusken
Lorenz Richter
PINNDiffM
103
30
0
07 Dec 2021
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
122
119
0
30 Nov 2021
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDLDiffMAI4CE
103
25
0
24 Nov 2021
GFlowNet Foundations
GFlowNet Foundations
Yoshua Bengio
Salem Lahlou
T. Deleu
J. E. Hu
Mo Tiwari
Emmanuel Bengio
111
240
0
17 Nov 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate
  Generation
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
105
338
0
08 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
113
66
0
27 May 2021
Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
417
8,010
0
11 May 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
95
78
0
15 Feb 2021
Nested Sampling Methods
Nested Sampling Methods
J. Buchner
121
63
0
24 Jan 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
230
676
0
22 Jan 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
565
6,606
0
26 Nov 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
231
54
0
20 Oct 2020
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
134
68
0
23 Jul 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
1.0K
18,532
0
19 Jun 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural
  networks: perspectives from the theory of controlled diffusions and measures
  on path space
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
95
112
0
11 May 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
219
1,724
0
05 Dec 2019
12
Next