Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2501.06148
Cited By
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
10 January 2025
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training"
50 / 54 papers shown
Title
RNE: a plug-and-play framework for diffusion density estimation and inference-time control
Jiajun He
Jose Miguel Hernandez-Lobato
Yuanqi Du
Francisco Vargas
100
0
0
06 Jun 2025
Adaptive Destruction Processes for Diffusion Samplers
Timofei Gritsaev
Nikita Morozov
Kirill Tamogashev
D. Tiapkin
S. Samsonov
A. Naumov
Dmitry Vetrov
Nikolay Malkin
60
0
0
02 Jun 2025
On scalable and efficient training of diffusion samplers
Minkyu Kim
Kiyoung Seong
Dongyeop Woo
SungSoo Ahn
Minsu Kim
DiffM
150
0
0
26 May 2025
Energy-based generator matching: A neural sampler for general state space
Dongyeop Woo
Minsu Kim
Minkyu Kim
Kiyoung Seong
SungSoo Ahn
97
0
0
26 May 2025
MetaGFN: Exploring Distant Modes with Adapted Metadynamics for Continuous GFlowNets
Dominic Phillips
F. Cipcigan
107
4
0
28 Aug 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OT
DiffM
89
11
0
10 Jul 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
146
27
0
11 Jun 2024
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
191
32
0
31 May 2024
Discrete Probabilistic Inference as Control in Multi-path Environments
T. Deleu
Padideh Nouri
Nikolay Malkin
Doina Precup
Yoshua Bengio
183
31
0
15 Feb 2024
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
135
30
0
09 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
112
58
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
239
28
0
07 Feb 2024
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
Yoshua Bengio
Y. Hezaveh
Laurence Perreault Levasseur
BDL
109
11
0
06 Dec 2023
Bespoke Solvers for Generative Flow Models
Neta Shaul
Juan C. Pérez
Ricky T. Q. Chen
Ali K. Thabet
Albert Pumarola
Y. Lipman
81
27
0
29 Oct 2023
Generative Fractional Diffusion Models
Gabriel Nobis
Maximilian Springenberg
Marco Aversa
Michael Detzel
Rembert Daems
...
Tolga Birdal
Manfred Opper
Christoph Knochenhauer
Luis Oala
Wojciech Samek
DiffM
76
6
0
26 Oct 2023
Towards equilibrium molecular conformation generation with GFlowNets
Alexandra Volokhova
Michal Koziarski
Alex Hernández-García
Cheng-Hao Liu
Santiago Miret
Pablo Lemos
Luca Thiede
Zichao Yan
Alán Aspuru-Guzik
Yoshua Bengio
75
11
0
20 Oct 2023
Variational Inference for SDEs Driven by Fractional Noise
Rembert Daems
Manfred Opper
Guillaume Crevecoeur
Tolga Birdal
99
6
0
19 Oct 2023
Efficient Integrators for Diffusion Generative Models
Kushagra Pandey
Maja R. Rudolph
Stephan Mandt
DiffM
68
11
0
11 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
125
49
0
04 Oct 2023
Generative Flow Networks: a Markov Chain Perspective
T. Deleu
Yoshua Bengio
BDL
92
9
0
04 Jul 2023
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
121
65
0
03 Jul 2023
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
86
91
0
27 Feb 2023
Better Training of GFlowNets with Local Credit and Incomplete Trajectories
L. Pan
Nikolay Malkin
Dinghuai Zhang
Yoshua Bengio
108
72
0
03 Feb 2023
A theory of continuous generative flow networks
Salem Lahlou
T. Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernández-García
Léna Néhale Ezzine
Yoshua Bengio
Nikolay Malkin
AI4CE
146
93
0
30 Jan 2023
Learning Interpolations between Boltzmann Densities
Bálint Máté
Franccois Fleuret
137
29
0
18 Jan 2023
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
154
97
0
02 Nov 2022
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
231
89
0
02 Oct 2022
Learning GFlowNets from partial episodes for improved convergence and stability
Kanika Madan
Jarrid Rector-Brooks
Maksym Korablyov
Emmanuel Bengio
Moksh Jain
A. Nica
Tom Bosc
Yoshua Bengio
Nikolay Malkin
100
102
0
26 Sep 2022
Score-Based Diffusion meets Annealed Importance Sampling
Arnaud Doucet
Will Grathwohl
A. G. Matthews
Heiko Strathmann
DiffM
117
46
0
16 Aug 2022
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
136
95
0
03 Aug 2022
Fast Sampling of Diffusion Models with Exponential Integrator
Qinsheng Zhang
Yongxin Chen
DiffM
114
439
0
29 Apr 2022
Trajectory balance: Improved credit assignment in GFlowNets
Nikolay Malkin
Moksh Jain
Emmanuel Bengio
Chen Sun
Yoshua Bengio
272
186
0
31 Jan 2022
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
121
53
0
31 Jan 2022
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
615
15,855
0
20 Dec 2021
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems
Nikolas Nusken
Lorenz Richter
PINN
DiffM
103
30
0
07 Dec 2021
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
122
119
0
30 Nov 2021
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
103
25
0
24 Nov 2021
GFlowNet Foundations
Yoshua Bengio
Salem Lahlou
T. Deleu
J. E. Hu
Mo Tiwari
Emmanuel Bengio
111
240
0
17 Nov 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
105
338
0
08 Jun 2021
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
113
66
0
27 May 2021
Diffusion Models Beat GANs on Image Synthesis
Prafulla Dhariwal
Alex Nichol
417
8,010
0
11 May 2021
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
95
78
0
15 Feb 2021
Nested Sampling Methods
J. Buchner
121
63
0
24 Jan 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
230
676
0
22 Jan 2021
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
565
6,606
0
26 Nov 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
231
54
0
20 Oct 2020
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
134
68
0
23 Jul 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
1.0K
18,532
0
19 Jun 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
95
112
0
11 May 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
219
1,724
0
05 Dec 2019
1
2
Next