ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.16955
  4. Cited By
NumbOD: A Spatial-Frequency Fusion Attack Against Object Detectors

NumbOD: A Spatial-Frequency Fusion Attack Against Object Detectors

22 December 2024
Ziqi Zhou
Bowen Li
Yufei Song
Zhifei Yu
Shengshan Hu
Wei Wan
L. Zhang
Dezhong Yao
Hai Jin
    AAML
ArXiv (abs)PDFHTML

Papers citing "NumbOD: A Spatial-Frequency Fusion Attack Against Object Detectors"

31 / 31 papers shown
Title
PB-UAP: Hybrid Universal Adversarial Attack For Image Segmentation
PB-UAP: Hybrid Universal Adversarial Attack For Image Segmentation
Yufei Song
Ziqi Zhou
Minghui Li
Xiaobei Wang
Hangtao Zhang
Menghao Deng
Wei Wan
Shengshan Hu
L. Zhang
AAML
290
5
0
21 Dec 2024
DarkSAM: Fooling Segment Anything Model to Segment Nothing
DarkSAM: Fooling Segment Anything Model to Segment Nothing
Ziqi Zhou
Yufei Song
Minghui Li
Shengshan Hu
Xianlong Wang
Leo Yu Zhang
Dezhong Yao
Hai Jin
91
12
0
26 Sep 2024
Securely Fine-tuning Pre-trained Encoders Against Adversarial Examples
Securely Fine-tuning Pre-trained Encoders Against Adversarial Examples
Ziqi Zhou
Minghui Li
Wei Liu
Shengshan Hu
Yechao Zhang
Wei Wan
Lulu Xue
Leo Yu Zhang
Dezhong Yao
Hai Jin
SILMAAML
101
11
0
16 Mar 2024
Unified Adversarial Patch for Visible-Infrared Cross-modal Attacks in
  the Physical World
Unified Adversarial Patch for Visible-Infrared Cross-modal Attacks in the Physical World
Xingxing Wei
Yao Huang
Yitong Sun
Jie Yu
AAML
66
16
0
27 Jul 2023
Why Does Little Robustness Help? Understanding and Improving Adversarial
  Transferability from Surrogate Training
Why Does Little Robustness Help? Understanding and Improving Adversarial Transferability from Surrogate Training
Yechao Zhang
Shengshan Hu
Leo Yu Zhang
Junyu Shi
Minghui Li
Xiaogeng Liu
Wei Wan
Hai Jin
AAML
111
24
0
15 Jul 2023
T-SEA: Transfer-based Self-Ensemble Attack on Object Detection
T-SEA: Transfer-based Self-Ensemble Attack on Object Detection
Hao Huang
Ziyan Chen
Huanran Chen
Yongtao Wang
Ke-Yue Zhang
AAML
94
59
0
16 Nov 2022
Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity
Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity
Cheng Luo
Qinliang Lin
Weicheng Xie
Bizhu Wu
Jinheng Xie
Linlin Shen
AAML
106
104
0
10 Mar 2022
Fingerprinting Deep Neural Networks Globally via Universal Adversarial
  Perturbations
Fingerprinting Deep Neural Networks Globally via Universal Adversarial Perturbations
Zirui Peng
Shaofeng Li
Guoxing Chen
Cheng Zhang
Haojin Zhu
Minhui Xue
AAMLFedML
83
68
0
17 Feb 2022
TOOD: Task-aligned One-stage Object Detection
TOOD: Task-aligned One-stage Object Detection
Chengjian Feng
Yujie Zhong
Yu Gao
Matthew R. Scott
Weilin Huang
ObjD
86
744
0
17 Aug 2021
Oriented R-CNN for Object Detection
Oriented R-CNN for Object Detection
Xingxing Xie
Gong Cheng
Jiabao Wang
Xiwen Yao
Junwei Han
ObjD
174
701
0
12 Aug 2021
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
Pei Sun
Rufeng Zhang
Yi Jiang
Tao Kong
Chenfeng Xu
...
Masayoshi Tomizuka
Lei Li
Zehuan Yuan
Changhu Wang
Ping Luo
ObjD
101
1,100
0
25 Nov 2020
Deformable DETR: Deformable Transformers for End-to-End Object Detection
Deformable DETR: Deformable Transformers for End-to-End Object Detection
Xizhou Zhu
Weijie Su
Lewei Lu
Bin Li
Xiaogang Wang
Jifeng Dai
ViT
246
5,102
0
08 Oct 2020
VarifocalNet: An IoU-aware Dense Object Detector
VarifocalNet: An IoU-aware Dense Object Detector
Haoyang Zhang
Ying Wang
Feras Dayoub
Niko Sünderhauf
ObjD
97
687
0
31 Aug 2020
Gliding vertex on the horizontal bounding box for multi-oriented object
  detection
Gliding vertex on the horizontal bounding box for multi-oriented object detection
Yongchao Xu
Mingtao Fu
Qimeng Wang
Yukang Wang
Kai Chen
Guisong Xia
X. Bai
ObjD
116
664
0
21 Nov 2019
Cascade R-CNN: High Quality Object Detection and Instance Segmentation
Cascade R-CNN: High Quality Object Detection and Instance Segmentation
Zhaowei Cai
Nuno Vasconcelos
ObjD
82
1,360
0
24 Jun 2019
Adversarial Training and Robustness for Multiple Perturbations
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAMLSILM
82
380
0
30 Apr 2019
RepPoints: Point Set Representation for Object Detection
RepPoints: Point Set Representation for Object Detection
Ze Yang
Shaohui Liu
Han Hu
Liwei Wang
Stephen Lin
3DPC
106
871
0
25 Apr 2019
FCOS: Fully Convolutional One-Stage Object Detection
FCOS: Fully Convolutional One-Stage Object Detection
Zhi Tian
Chunhua Shen
Hao Chen
Tong He
ObjD
143
5,018
0
02 Apr 2019
Deep Learning for Large-Scale Traffic-Sign Detection and Recognition
Deep Learning for Large-Scale Traffic-Sign Detection and Recognition
Domen Tabernik
D. Skočaj
56
251
0
01 Apr 2019
Robust Adversarial Perturbation on Deep Proposal-based Models
Robust Adversarial Perturbation on Deep Proposal-based Models
Yuezun Li
Dan Tian
Ming-Ching Chang
Xiao Bian
Siwei Lyu
AAML
62
106
0
16 Sep 2018
Improving Transferability of Adversarial Examples with Input Diversity
Improving Transferability of Adversarial Examples with Input Diversity
Cihang Xie
Zhishuai Zhang
Yuyin Zhou
Song Bai
Jianyu Wang
Zhou Ren
Alan Yuille
AAML
108
1,125
0
19 Mar 2018
To prune, or not to prune: exploring the efficacy of pruning for model
  compression
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
197
1,281
0
05 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
319
12,138
0
19 Jun 2017
Adversarial Examples for Semantic Segmentation and Object Detection
Adversarial Examples for Semantic Segmentation and Object Detection
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Yuyin Zhou
Lingxi Xie
Alan Yuille
GANAAML
109
934
0
24 Mar 2017
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
282
8,587
0
16 Aug 2016
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
154
4,905
0
14 Nov 2015
You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
724
37,033
0
08 Jun 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMatObjD
531
62,409
0
04 Jun 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
282
19,129
0
20 Dec 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
434
43,832
0
01 May 2014
Rich feature hierarchies for accurate object detection and semantic
  segmentation
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
291
26,223
0
11 Nov 2013
1