Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.23046
Cited By
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
30 October 2024
Arthur Pignet
Chiara Regniez
John Klein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Legitimate ground-truth-free metrics for deep uncertainty classification scoring"
23 / 23 papers shown
Title
URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates
Michael Kirchhof
Bálint Mucsányi
Seong Joon Oh
Enkelejda Kasneci
UQCV
438
15
0
07 Jul 2023
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
66
77
0
07 May 2023
OpenAssistant Conversations -- Democratizing Large Language Model Alignment
Andreas Kopf
Yannic Kilcher
Dimitri von Rutte
Sotiris Anagnostidis
Zhi Rui Tam
...
Arnav Dantuluri
Andrew Maguire
Christoph Schuhmann
Huu Nguyen
A. Mattick
ALM
LM&MA
126
628
0
14 Apr 2023
A framework for benchmarking class-out-of-distribution detection and its application to ImageNet
Ido Galil
Mohammed Dabbah
Ran El-Yaniv
UQCV
46
30
0
23 Feb 2023
What Can We Learn From The Selective Prediction And Uncertainty Estimation Performance Of 523 Imagenet Classifiers
Ido Galil
Mohammed Dabbah
Ran El-Yaniv
UQCV
54
30
0
23 Feb 2023
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PER
UD
66
77
0
07 Sep 2022
Is one annotation enough? A data-centric image classification benchmark for noisy and ambiguous label estimation
Lars Schmarje
Vasco Grossmann
Claudius Zelenka
S. Dippel
R. Kiko
...
M. Pastell
J. Stracke
A. Valros
N. Volkmann
Reinahrd Koch
82
37
0
13 Jul 2022
On the Calibration of Probabilistic Classifier Sets
Thomas Mortier
Viktor Bengs
Eyke Hüllermeier
Stijn Luca
Willem Waegeman
UQCV
59
7
0
20 May 2022
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
255
89
0
16 Feb 2021
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
271
1,355
0
08 Oct 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
82
627
0
14 Jul 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
168
449
0
17 Jun 2020
Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms
J. Caldeira
Brian D. Nord
BDL
UQCV
UD
75
81
0
22 Apr 2020
Human uncertainty makes classification more robust
Joshua C. Peterson
Ruairidh M. Battleday
Thomas Griffiths
Olga Russakovsky
OOD
62
302
0
19 Aug 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
162
1,691
0
06 Jun 2019
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Guotai Wang
Wenqi Li
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Vercauteren
UQCV
MedIm
OOD
143
591
0
19 Jul 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
177
991
0
05 Jun 2018
Bias-Reduced Uncertainty Estimation for Deep Neural Classifiers
Yonatan Geifman
Guy Uziel
Ran El-Yaniv
UQCV
57
140
0
21 May 2018
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,827
0
14 Jun 2017
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDL
UQCV
68
1,735
0
08 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
822
5,811
0
05 Dec 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
155
3,452
0
07 Oct 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
818
9,306
0
06 Jun 2015
1