ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.22948
  4. Cited By
ELBOing Stein: Variational Bayes with Stein Mixture Inference
v1v2 (latest)

ELBOing Stein: Variational Bayes with Stein Mixture Inference

30 October 2024
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
    BDL
ArXiv (abs)PDFHTML

Papers citing "ELBOing Stein: Variational Bayes with Stein Mixture Inference"

40 / 40 papers shown
Title
Reparameterization invariance in approximate Bayesian inference
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
124
9
0
05 Jun 2024
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
139
2
0
25 Oct 2023
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
100
20
0
25 Nov 2022
A Finite-Particle Convergence Rate for Stein Variational Gradient
  Descent
A Finite-Particle Convergence Rate for Stein Variational Gradient Descent
Jiaxin Shi
Lester W. Mackey
83
20
0
17 Nov 2022
Repulsive Deep Ensembles are Bayesian
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCVBDL
129
101
0
22 Jun 2021
Bayesian Deep Learning via Subnetwork Inference
Bayesian Deep Learning via Subnetwork Inference
Erik A. Daxberger
Eric T. Nalisnick
J. Allingham
Javier Antorán
José Miguel Hernández-Lobato
UQCVBDL
130
86
0
28 Oct 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
100
70
0
03 Jun 2020
Composable Effects for Flexible and Accelerated Probabilistic
  Programming in NumPyro
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
Du Phan
Neeraj Pradhan
M. Jankowiak
66
359
0
24 Dec 2019
Mitigating the Effects of Non-Identifiability on Inference for Bayesian
  Neural Networks with Latent Variables
Mitigating the Effects of Non-Identifiability on Inference for Bayesian Neural Networks with Latent Variables
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
BDLUQCV
70
1
0
01 Nov 2019
Stein Variational Gradient Descent With Matrix-Valued Kernels
Stein Variational Gradient Descent With Matrix-Valued Kernels
Dilin Wang
Ziyang Tang
Minh Nguyen
Qiang Liu
90
62
0
28 Oct 2019
Ín-Between' Uncertainty in Bayesian Neural Networks
Ín-Between' Uncertainty in Bayesian Neural Networks
Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard Turner
BDLUQCV
73
121
0
27 Jun 2019
Rank-normalization, folding, and localization: An improved $\widehat{R}$
  for assessing convergence of MCMC
Rank-normalization, folding, and localization: An improved R^\widehat{R}R for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
107
954
0
19 Mar 2019
Stochastic Gradient MCMC with Repulsive Forces
Stochastic Gradient MCMC with Repulsive Forces
Víctor Gallego
D. Insua
BDL
70
37
0
30 Nov 2018
On the Importance of Strong Baselines in Bayesian Deep Learning
On the Importance of Strong Baselines in Bayesian Deep Learning
Jishnu Mukhoti
Pontus Stenetorp
Y. Gal
UQCVBDL
71
33
0
23 Nov 2018
Stein Variational Gradient Descent as Moment Matching
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
104
38
0
27 Oct 2018
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
143
117
0
08 Jun 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
69
89
0
29 May 2018
Scaling limit of the Stein variational gradient descent: the mean field
  regime
Scaling limit of the Stein variational gradient descent: the mean field regime
Jianfeng Lu
Yulong Lu
J. Nolen
85
80
0
10 May 2018
Deep Learning using Rectified Linear Units (ReLU)
Deep Learning using Rectified Linear Units (ReLU)
Abien Fred Agarap
122
3,252
0
22 Mar 2018
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
65
67
0
30 Nov 2017
Message Passing Stein Variational Gradient Descent
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
77
92
0
13 Nov 2017
Learning to Draw Samples with Amortized Stein Variational Gradient
  Descent
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GANBDL
85
82
0
20 Jul 2017
A Divergence Bound for Hybrids of MCMC and Variational Inference and an
  Application to Langevin Dynamics and SGVI
A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI
Justin Domke
BDL
80
6
0
20 Jun 2017
Stein Variational Gradient Descent as Gradient Flow
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
137
277
0
25 Apr 2017
Stein Variational Adaptive Importance Sampling
Stein Variational Adaptive Importance Sampling
J. Han
Qiang Liu
150
28
0
18 Apr 2017
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
189
224
0
06 Mar 2017
Variational Boosting: Iteratively Refining Posterior Approximations
Variational Boosting: Iteratively Refining Posterior Approximations
Andrew C. Miller
N. Foti
Ryan P. Adams
92
124
0
20 Nov 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
136
1,095
0
16 Aug 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
133
720
0
02 Mar 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
381
4,832
0
04 Jan 2016
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRLVLM
111
337
0
07 Nov 2015
Practical Bayesian model evaluation using leave-one-out cross-validation
  and WAIC
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Aki Vehtari
Andrew Gelman
Jonah Gabry
164
4,095
0
16 Jul 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCVBDL
153
945
0
18 Feb 2015
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
192
3,276
0
05 Dec 2014
Variational Particle Approximations
Variational Particle Approximations
A. Saeedi
Tejas D. Kulkarni
Vikash K. Mansinghka
S. Gershman
186
60
0
24 Feb 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
205
1,167
0
31 Dec 2013
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
312
14,988
1
21 Dec 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
291
2,631
0
29 Jun 2012
Fixed-Form Variational Posterior Approximation through Stochastic Linear
  Regression
Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression
Tim Salimans
David A. Knowles
136
251
0
28 Jun 2012
Nonparametric variational inference
Nonparametric variational inference
S. Gershman
Matt Hoffman
David M. Blei
BDL
117
154
0
18 Jun 2012
1