Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2410.22948
Cited By
v1
v2 (latest)
ELBOing Stein: Variational Bayes with Stein Mixture Inference
30 October 2024
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"ELBOing Stein: Variational Bayes with Stein Mixture Inference"
40 / 40 papers shown
Title
Reparameterization invariance in approximate Bayesian inference
Hrittik Roy
M. Miani
Carl Henrik Ek
Philipp Hennig
Marvin Pfortner
Lukas Tatzel
Søren Hauberg
BDL
124
9
0
05 Jun 2024
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
139
2
0
25 Oct 2023
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
100
20
0
25 Nov 2022
A Finite-Particle Convergence Rate for Stein Variational Gradient Descent
Jiaxin Shi
Lester W. Mackey
83
20
0
17 Nov 2022
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
129
101
0
22 Jun 2021
Bayesian Deep Learning via Subnetwork Inference
Erik A. Daxberger
Eric T. Nalisnick
J. Allingham
Javier Antorán
José Miguel Hernández-Lobato
UQCV
BDL
130
86
0
28 Oct 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
100
70
0
03 Jun 2020
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
Du Phan
Neeraj Pradhan
M. Jankowiak
66
359
0
24 Dec 2019
Mitigating the Effects of Non-Identifiability on Inference for Bayesian Neural Networks with Latent Variables
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
BDL
UQCV
70
1
0
01 Nov 2019
Stein Variational Gradient Descent With Matrix-Valued Kernels
Dilin Wang
Ziyang Tang
Minh Nguyen
Qiang Liu
90
62
0
28 Oct 2019
Ín-Between' Uncertainty in Bayesian Neural Networks
Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard Turner
BDL
UQCV
73
121
0
27 Jun 2019
Rank-normalization, folding, and localization: An improved
R
^
\widehat{R}
R
for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
107
954
0
19 Mar 2019
Stochastic Gradient MCMC with Repulsive Forces
Víctor Gallego
D. Insua
BDL
70
37
0
30 Nov 2018
On the Importance of Strong Baselines in Bayesian Deep Learning
Jishnu Mukhoti
Pontus Stenetorp
Y. Gal
UQCV
BDL
71
33
0
23 Nov 2018
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
104
38
0
27 Oct 2018
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
143
117
0
08 Jun 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
69
89
0
29 May 2018
Scaling limit of the Stein variational gradient descent: the mean field regime
Jianfeng Lu
Yulong Lu
J. Nolen
85
80
0
10 May 2018
Deep Learning using Rectified Linear Units (ReLU)
Abien Fred Agarap
122
3,252
0
22 Mar 2018
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
65
67
0
30 Nov 2017
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
77
92
0
13 Nov 2017
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GAN
BDL
85
82
0
20 Jul 2017
A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI
Justin Domke
BDL
80
6
0
20 Jun 2017
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
137
277
0
25 Apr 2017
Stein Variational Adaptive Importance Sampling
J. Han
Qiang Liu
150
28
0
18 Apr 2017
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
189
224
0
06 Mar 2017
Variational Boosting: Iteratively Refining Posterior Approximations
Andrew C. Miller
N. Foti
Ryan P. Adams
92
124
0
20 Nov 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
136
1,095
0
16 Aug 2016
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
133
720
0
02 Mar 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
381
4,832
0
04 Jan 2016
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
111
337
0
07 Nov 2015
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Aki Vehtari
Andrew Gelman
Jonah Gabry
164
4,095
0
16 Jul 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
153
945
0
18 Feb 2015
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
192
3,276
0
05 Dec 2014
Variational Particle Approximations
A. Saeedi
Tejas D. Kulkarni
Vikash K. Mansinghka
S. Gershman
186
60
0
24 Feb 2014
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
205
1,167
0
31 Dec 2013
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
312
14,988
1
21 Dec 2013
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
291
2,631
0
29 Jun 2012
Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression
Tim Salimans
David A. Knowles
136
251
0
28 Jun 2012
Nonparametric variational inference
S. Gershman
Matt Hoffman
David M. Blei
BDL
117
154
0
18 Jun 2012
1