ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.19923
  4. Cited By
Language Agents Meet Causality -- Bridging LLMs and Causal World Models

Language Agents Meet Causality -- Bridging LLMs and Causal World Models

25 October 2024
John Gkountouras
Matthias Lindemann
Phillip Lippe
E. Gavves
Ivan Titov
    LRM
ArXivPDFHTML

Papers citing "Language Agents Meet Causality -- Bridging LLMs and Causal World Models"

20 / 20 papers shown
Title
Can Large Language Models Reason and Plan?
Can Large Language Models Reason and Plan?
Subbarao Kambhampati
LRM
34
73
0
07 Mar 2024
The Essential Role of Causality in Foundation World Models for Embodied
  AI
The Essential Role of Causality in Foundation World Models for Embodied AI
Tarun Gupta
Wenbo Gong
Chao Ma
Nick Pawlowski
Agrin Hilmkil
...
Jianfeng Gao
Stefan Bauer
Danica Kragic
Bernhard Schölkopf
Cheng Zhang
52
15
0
06 Feb 2024
Reasoning with Language Model is Planning with World Model
Reasoning with Language Model is Planning with World Model
Shibo Hao
Yi Gu
Haodi Ma
Joshua Jiahua Hong
Zhen Wang
D. Wang
Zhiting Hu
ReLM
LRM
LLMAG
89
539
0
24 May 2023
Leveraging Pre-trained Large Language Models to Construct and Utilize
  World Models for Model-based Task Planning
Leveraging Pre-trained Large Language Models to Construct and Utilize World Models for Model-based Task Planning
L. Guan
Karthik Valmeekam
S. Sreedharan
Subbarao Kambhampati
LLMAG
36
170
0
24 May 2023
MemoryBank: Enhancing Large Language Models with Long-Term Memory
MemoryBank: Enhancing Large Language Models with Long-Term Memory
Wanjun Zhong
Lianghong Guo
Qi-Fei Gao
He Ye
Yanlin Wang
LLMAG
RALM
KELM
48
127
0
17 May 2023
Sigmoid Loss for Language Image Pre-Training
Sigmoid Loss for Language Image Pre-Training
Xiaohua Zhai
Basil Mustafa
Alexander Kolesnikov
Lucas Beyer
CLIP
VLM
63
1,028
0
27 Mar 2023
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
58
50
0
20 Jun 2022
Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
Michael Ahn
Anthony Brohan
Noah Brown
Yevgen Chebotar
Omar Cortes
...
Ted Xiao
Peng Xu
Sichun Xu
Mengyuan Yan
Andy Zeng
LM&Ro
105
1,901
0
04 Apr 2022
Weakly supervised causal representation learning
Weakly supervised causal representation learning
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
OOD
CML
52
123
0
30 Mar 2022
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Jason W. Wei
Xuezhi Wang
Dale Schuurmans
Maarten Bosma
Brian Ichter
F. Xia
Ed H. Chi
Quoc Le
Denny Zhou
LM&Ro
LRM
AI4CE
ReLM
562
9,009
0
28 Jan 2022
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
445
41,106
0
28 May 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
201
315
0
07 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
211
42,038
0
03 Dec 2019
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Nils Reimers
Iryna Gurevych
540
11,979
0
27 Aug 2019
COBRA: Data-Efficient Model-Based RL through Unsupervised Object
  Discovery and Curiosity-Driven Exploration
COBRA: Data-Efficient Model-Based RL through Unsupervised Object Discovery and Curiosity-Driven Exploration
Nicholas Watters
Loic Matthey
Matko Bosnjak
Christopher P. Burgess
Alexander Lerchner
OffRL
97
117
0
22 May 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
52
123
0
03 May 2019
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
361
3,101
0
04 Jun 2018
World Models
World Models
David R Ha
Jürgen Schmidhuber
SyDa
90
1,050
0
27 Mar 2018
Relational Neural Expectation Maximization: Unsupervised Discovery of
  Objects and their Interactions
Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions
Sjoerd van Steenkiste
Michael Chang
Klaus Greff
Jürgen Schmidhuber
BDL
OCL
DRL
120
290
0
28 Feb 2018
AI2-THOR: An Interactive 3D Environment for Visual AI
AI2-THOR: An Interactive 3D Environment for Visual AI
Eric Kolve
Roozbeh Mottaghi
Winson Han
Eli VanderBilt
Luca Weihs
...
Daniel Gordon
Yuke Zhu
Aniruddha Kembhavi
Abhinav Gupta
Ali Farhadi
LM&Ro
32
1,091
0
14 Dec 2017
1