ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.19426
  4. Cited By
Analyzing Generative Models by Manifold Entropic Metrics
v1v2 (latest)

Analyzing Generative Models by Manifold Entropic Metrics

25 October 2024
Daniel Galperin
Ullrich Köthe
    DRL
ArXiv (abs)PDFHTML

Papers citing "Analyzing Generative Models by Manifold Entropic Metrics"

35 / 35 papers shown
Title
Robustness of Nonlinear Representation Learning
Robustness of Nonlinear Representation Learning
Simon Buchholz
Bernhard Schölkopf
OOD
412
4
0
19 Mar 2025
The Road Less Scheduled
The Road Less Scheduled
Aaron Defazio
Xingyu Yang
Yang
Harsh Mehta
Konstantin Mishchenko
Ahmed Khaled
Ashok Cutkosky
96
59
0
24 May 2024
Free-form Flows: Make Any Architecture a Normalizing Flow
Free-form Flows: Make Any Architecture a Normalizing Flow
Felix Dräxler
Peter Sorrenson
Lea Zimmermann
Armand Rousselot
Ullrich Kothe
TPMDRLAI4CEBDL
83
11
0
25 Oct 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
56
8
0
04 Aug 2023
Compositional Generalization from First Principles
Compositional Generalization from First Principles
Thaddäus Wiedemer
Prasanna Mayilvahanan
Matthias Bethge
Wieland Brendel
OCL
81
46
0
10 Jul 2023
Nonlinear Independent Component Analysis for Principled Disentanglement
  in Unsupervised Deep Learning
Nonlinear Independent Component Analysis for Principled Disentanglement in Unsupervised Deep Learning
Aapo Hyvarinen
Ilyes Khemakhem
H. Morioka
CMLOOD
91
37
0
29 Mar 2023
Identifiability of latent-variable and structural-equation models: from
  linear to nonlinear
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
82
45
0
06 Feb 2023
Disentangled Representation Learning
Disentangled Representation Learning
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
101
87
0
21 Nov 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
  Case
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
73
30
0
16 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
68
20
0
06 Jun 2022
Nonlinear Isometric Manifold Learning for Injective Normalizing Flows
Nonlinear Isometric Manifold Learning for Injective Normalizing Flows
Eike Cramer
Felix Rauh
Alexander Mitsos
Raúl Tempone
Manuel Dahmen
DRL
59
9
0
08 Mar 2022
On Causally Disentangled Representations
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OODCML
90
22
0
10 Dec 2021
Disentanglement Analysis with Partial Information Decomposition
Disentanglement Analysis with Partial Information Decomposition
Seiya Tokui
Issei Sato
CoGeDRL
71
15
0
31 Aug 2021
Tractable Density Estimation on Learned Manifolds with Conformal
  Embedding Flows
Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows
Brendan Leigh Ross
Jesse C. Cresswell
TPM
73
32
0
09 Jun 2021
Independent mechanism analysis, a new concept?
Independent mechanism analysis, a new concept?
Luigi Gresele
Julius von Kügelgen
Vincent Stimper
Bernhard Schölkopf
M. Besserve
CML
68
102
0
09 Jun 2021
Rectangular Flows for Manifold Learning
Rectangular Flows for Manifold Learning
Anthony L. Caterini
Gabriel Loaiza-Ganem
Geoff Pleiss
John P. Cunningham
DRL
66
47
0
02 Jun 2021
Trumpets: Injective Flows for Inference and Inverse Problems
Trumpets: Injective Flows for Inference and Inverse Problems
K. Kothari
AmirEhsan Khorashadizadeh
Maarten V. de Hoop
Ivan Dokmanić
TPM
48
50
0
20 Feb 2021
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Jason J. Yu
Konstantinos G. Derpanis
Marcus A. Brubaker
TPM
150
41
0
26 Oct 2020
Flows for simultaneous manifold learning and density estimation
Flows for simultaneous manifold learning and density estimation
Johann Brehmer
Kyle Cranmer
DRLAI4CE
90
163
0
31 Mar 2020
Unsupervised Discovery of Interpretable Directions in the GAN Latent
  Space
Unsupervised Discovery of Interpretable Directions in the GAN Latent Space
A. Voynov
Artem Babenko
141
419
0
10 Feb 2020
Disentanglement by Nonlinear ICA with General Incompressible-flow
  Networks (GIN)
Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)
Peter Sorrenson
Carsten Rother
Ullrich Kothe
DRLCML
65
121
0
14 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
532
42,591
0
03 Dec 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Theory and Evaluation Metrics for Learning Disentangled Representations
Kien Do
T. Tran
CoGeDRL
74
96
0
26 Aug 2019
Guided Image Generation with Conditional Invertible Neural Networks
Guided Image Generation with Conditional Invertible Neural Networks
Lynton Ardizzone
Carsten T. Lüth
Jakob Kruse
Carsten Rother
Ullrich Kothe
DRL
86
294
0
04 Jul 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
186
777
0
10 Jun 2019
Unsupervised Model Selection for Variational Disentangled Representation
  Learning
Unsupervised Model Selection for Variational Disentangled Representation Learning
Sunny Duan
Loic Matthey
Andre Saraiva
Nicholas Watters
Christopher P. Burgess
Alexander Lerchner
I. Higgins
OODDRL
71
80
0
29 May 2019
Relevance Factor VAE: Learning and Identifying Disentangled Factors
Relevance Factor VAE: Learning and Identifying Disentangled Factors
Minyoung Kim
Yuting Wang
Pritish Sahu
Vladimir Pavlovic
CoGeCMLDRL
69
40
0
05 Feb 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
124
1,471
0
29 Nov 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
300
3,141
0
09 Jul 2018
Learning Deep Disentangled Embeddings with the F-Statistic Loss
Learning Deep Disentangled Embeddings with the F-Statistic Loss
Karl Ridgeway
Michael C. Mozer
FedMLDRLCoGe
72
218
0
14 Feb 2018
Variational Inference of Disentangled Latent Concepts from Unlabeled
  Observations
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Abhishek Kumar
P. Sattigeri
Avinash Balakrishnan
BDLDRL
83
523
0
02 Nov 2017
EMNIST: an extension of MNIST to handwritten letters
EMNIST: an extension of MNIST to handwritten letters
Gregory Cohen
Saeed Afshar
J. Tapson
André van Schaik
65
720
0
17 Feb 2017
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
275
3,716
0
26 May 2016
Large-scale Log-determinant Computation through Stochastic Chebyshev
  Expansions
Large-scale Log-determinant Computation through Stochastic Chebyshev Expansions
Insu Han
Dmitry Malioutov
Jinwoo Shin
58
95
0
22 Mar 2015
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
274
12,458
0
24 Jun 2012
1