ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.10516
  4. Cited By
UniGEM: A Unified Approach to Generation and Property Prediction for Molecules
v1v2v3 (latest)

UniGEM: A Unified Approach to Generation and Property Prediction for Molecules

14 October 2024
Shikun Feng
Yuyan Ni
Yan Lu
Zhi-Ming Ma
Wei-Ying Ma
Yanyan Lan
ArXiv (abs)PDFHTML

Papers citing "UniGEM: A Unified Approach to Generation and Property Prediction for Molecules"

44 / 44 papers shown
Title
Uni-3DAR: Unified 3D Generation and Understanding via Autoregression on Compressed Spatial Tokens
Uni-3DAR: Unified 3D Generation and Understanding via Autoregression on Compressed Spatial Tokens
Shuqi Lu
Haowei Lin
Lin Yao
Zhifeng Gao
Xiaohong Ji
Weinan E
Linfeng Zhang
Guolin Ke
77
0
0
20 Mar 2025
Straight-Line Diffusion Model for Efficient 3D Molecular Generation
Straight-Line Diffusion Model for Efficient 3D Molecular Generation
Yuyan Ni
Shikun Feng
Haohan Chi
Bowen Zheng
Huan-ang Gao
Wei-Ying Ma
Zhi-Ming Ma
Yanyan Lan
DiffM
104
3
0
04 Mar 2025
Geometric Representation Condition Improves Equivariant Molecule Generation
Geometric Representation Condition Improves Equivariant Molecule Generation
Zian Li
Cai Zhou
Xiyuan Wang
Xingang Peng
Muhan Zhang
85
2
0
04 Oct 2024
Pre-training with Fractional Denoising to Enhance Molecular Property
  Prediction
Pre-training with Fractional Denoising to Enhance Molecular Property Prediction
Yuyan Ni
Shikun Feng
Xin Hong
Yuancheng Sun
Wei-Ying Ma
Zhiming Ma
Qiwei Ye
Yanyan Lan
AI4CE
59
16
0
14 Jul 2024
UniCorn: A Unified Contrastive Learning Approach for Multi-view
  Molecular Representation Learning
UniCorn: A Unified Contrastive Learning Approach for Multi-view Molecular Representation Learning
Shikun Feng
Yuyan Ni
Minghao Li
Yanwen Huang
Zhiming Ma
Wei-Ying Ma
Yanyan Lan
SSL
91
8
0
15 May 2024
Rethinking Specificity in SBDD: Leveraging Delta Score and Energy-Guided
  Diffusion
Rethinking Specificity in SBDD: Leveraging Delta Score and Energy-Guided Diffusion
Bowen Gao
Minsi Ren
Yuyan Ni
Yanwen Huang
Yiran Zhou
Zhiming Ma
Wei-Ying Ma
Yanyan Lan
71
6
0
04 Mar 2024
Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows
  with Applications to Protein Co-Design
Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design
Andrew Campbell
Jason Yim
Regina Barzilay
Tom Rainforth
Tommi Jaakkola
AI4CE
121
123
0
07 Feb 2024
Deconstructing Denoising Diffusion Models for Self-Supervised Learning
Deconstructing Denoising Diffusion Models for Self-Supervised Learning
Xinlei Chen
Zhuang Liu
Saining Xie
Kaiming He
DiffM
86
60
0
25 Jan 2024
Non-Denoising Forward-Time Diffusions
Non-Denoising Forward-Time Diffusions
Stefano Peluchetti
DiffM
65
58
0
22 Dec 2023
Molecule Joint Auto-Encoding: Trajectory Pretraining with 2D and 3D
  Diffusion
Molecule Joint Auto-Encoding: Trajectory Pretraining with 2D and 3D Diffusion
Weitao Du
Jiujiu Chen
Xuecang Zhang
Zhiming Ma
Shengchao Liu
DiffM
80
9
0
06 Dec 2023
SODA: Bottleneck Diffusion Models for Representation Learning
SODA: Bottleneck Diffusion Models for Representation Learning
Drew A. Hudson
Daniel Zoran
Mateusz Malinowski
Andrew Kyle Lampinen
Andrew Jaegle
James L. McClelland
Loic Matthey
Felix Hill
Alexander Lerchner
DiffM
95
56
0
29 Nov 2023
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Yuyan Ni
Shikun Feng
Wei-Ying Ma
Zhiming Ma
Yanyan Lan
DiffMAI4CE
82
11
0
03 Nov 2023
UniMAP: Universal SMILES-Graph Representation Learning
UniMAP: Universal SMILES-Graph Representation Learning
Shikun Feng
Lixin Yang
Wei-Ying Ma
Yanyan Lan
OffRL
59
6
0
22 Oct 2023
Navigating the Design Space of Equivariant Diffusion-Based Generative
  Models for De Novo 3D Molecule Generation
Navigating the Design Space of Equivariant Diffusion-Based Generative Models for De Novo 3D Molecule Generation
Tuan Le
Julian Cremer
Frank Noé
Djork-Arné Clevert
Kristof T. Schütt
DiffM
101
31
0
29 Sep 2023
Bayesian Flow Networks
Bayesian Flow Networks
Alex Graves
R. Srivastava
Timothy James Atkinson
Faustino J. Gomez
BDL
114
45
0
14 Aug 2023
Fractional Denoising for 3D Molecular Pre-training
Fractional Denoising for 3D Molecular Pre-training
Shi Feng
Yuyan Ni
Yanyan Lan
Zhiming Ma
Wei-Ying Ma
DiffMAI4CE
84
29
0
20 Jul 2023
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
Shengchao Liu
Weitao Du
Zhiming Ma
Hongyu Guo
Jian Tang
85
33
0
28 May 2023
Geometric Latent Diffusion Models for 3D Molecule Generation
Geometric Latent Diffusion Models for 3D Molecule Generation
Minkai Xu
Alexander Powers
R. Dror
Stefano Ermon
J. Leskovec
DiffMAI4CE
130
150
0
02 May 2023
3D Equivariant Diffusion for Target-Aware Molecule Generation and
  Affinity Prediction
3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity Prediction
Jiaqi Guan
Wesley Wei Qian
Xingang Peng
Yufeng Su
Jian-wei Peng
Jianzhu Ma
DiffM
97
177
0
06 Mar 2023
MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
Clément Vignac
Nagham Osman
Laura Toni
P. Frossard
DiffM
84
63
0
17 Feb 2023
Two for One: Diffusion Models and Force Fields for Coarse-Grained
  Molecular Dynamics
Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics
Marloes Arts
Victor Garcia Satorras
Chin-Wei Huang
Daniel Zuegner
Marco Federici
C. Clementi
Frank Noé
Robert Pinsler
Rianne van den Berg
DiffM
109
92
0
01 Feb 2023
Equivariant Energy-Guided SDE for Inverse Molecular Design
Equivariant Energy-Guided SDE for Inverse Molecular Design
Fan Bao
Min Zhao
Zhongkai Hao
Pei‐Yun Li
Chongxuan Li
Jun Zhu
DiffM
260
67
0
30 Sep 2022
Sampling is as easy as learning the score: theory for diffusion models
  with minimal data assumptions
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
223
277
0
22 Sep 2022
Diffusion-based Molecule Generation with Informative Prior Bridges
Diffusion-based Molecule Generation with Informative Prior Bridges
Lemeng Wu
Chengyue Gong
Xingchao Liu
Mao Ye
Qiang Liu
DiffM
97
116
0
02 Sep 2022
Understanding Diffusion Models: A Unified Perspective
Understanding Diffusion Models: A Unified Perspective
Calvin Luo
DiffM
99
347
0
25 Aug 2022
Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs
Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs
Rui Jiao
Jiaqi Han
Wenbing Huang
Yu Rong
Yang Liu
AI4CE
101
49
0
18 Jul 2022
Pre-training via Denoising for Molecular Property Prediction
Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
Michael Schaarschmidt
James Martens
Hyunjik Kim
Yee Whye Teh
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Razvan Pascanu
Jonathan Godwin
DiffMAI4CE
110
127
0
31 May 2022
GraphMAE: Self-Supervised Masked Graph Autoencoders
GraphMAE: Self-Supervised Masked Graph Autoencoders
Zhenyu Hou
Xiao Liu
Yukuo Cen
Yuxiao Dong
Hongxia Yang
C. Wang
Jie Tang
SSL
99
586
0
22 May 2022
Equivariant Diffusion for Molecule Generation in 3D
Equivariant Diffusion for Molecule Generation in 3D
Emiel Hoogeboom
Victor Garcia Satorras
Clément Vignac
Max Welling
DiffM
133
623
0
31 Mar 2022
3D Infomax improves GNNs for Molecular Property Prediction
3D Infomax improves GNNs for Molecular Property Prediction
Hannes Stärk
Dominique Beaini
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Pietro Lio
AI4CE
92
208
0
08 Oct 2021
Pre-training Molecular Graph Representation with 3D Geometry
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
191
319
0
07 Oct 2021
GeomGCL: Geometric Graph Contrastive Learning for Molecular Property
  Prediction
GeomGCL: Geometric Graph Contrastive Learning for Molecular Property Prediction
Shuangli Li
Jingbo Zhou
Tong Xu
Dejing Dou
Hui Xiong
AI4CE
75
122
0
24 Sep 2021
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
  Property Prediction
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for Property Prediction
Xiaomin Fang
Lihang Liu
Jieqiong Lei
Donglong He
Shanzhuo Zhang
Jingbo Zhou
Fan Wang
Hua Wu
Haifeng Wang
AI4CE
63
452
0
11 Jun 2021
Diffusion-Based Representation Learning
Diffusion-Based Representation Learning
K. Abstreiter
Sarthak Mittal
Stefan Bauer
Bernhard Schölkopf
Arash Mehrjou
DiffM
80
58
0
29 May 2021
E(n) Equivariant Normalizing Flows
E(n) Equivariant Normalizing Flows
Victor Garcia Satorras
Emiel Hoogeboom
F. Fuchs
Ingmar Posner
Max Welling
BDL
87
181
0
19 May 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
113
1,033
0
19 Feb 2021
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
742
18,364
0
19 Jun 2020
GEOM: Energy-annotated molecular conformations for property prediction
  and molecular generation
GEOM: Energy-annotated molecular conformations for property prediction and molecular generation
Simon Axelrod
Rafael Gómez-Bombarelli
3DVAI4CE
97
221
0
09 Jun 2020
Cormorant: Covariant Molecular Neural Networks
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
123
425
0
06 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
146
211
0
02 Jun 2019
Strategies for Pre-training Graph Neural Networks
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSLAI4CE
120
1,416
0
29 May 2019
Representation Learning with Contrastive Predictive Coding
Representation Learning with Contrastive Predictive Coding
Aaron van den Oord
Yazhe Li
Oriol Vinyals
DRLSSL
351
10,364
0
10 Jul 2018
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
109
57
0
04 Sep 2017
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
312
7,031
0
12 Mar 2015
1