ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.08458
  4. Cited By
Simultaneous Reward Distillation and Preference Learning: Get You a Language Model Who Can Do Both
v1v2 (latest)

Simultaneous Reward Distillation and Preference Learning: Get You a Language Model Who Can Do Both

11 October 2024
Abhijnan Nath
Changsoo Jung
Ethan Seefried
Nikhil Krishnaswamy
ArXiv (abs)PDFHTML

Papers citing "Simultaneous Reward Distillation and Preference Learning: Get You a Language Model Who Can Do Both"

50 / 61 papers shown
Title
Frictional Agent Alignment Framework: Slow Down and Don't Break Things
Frictional Agent Alignment Framework: Slow Down and Don't Break Things
Abhijnan Nath
Carine Graff
Andrei Bachinin
Nikhil Krishnaswamy
110
1
0
26 May 2025
LiPO: Listwise Preference Optimization through Learning-to-Rank
LiPO: Listwise Preference Optimization through Learning-to-Rank
Tianqi Liu
Zhen Qin
Junru Wu
Jiaming Shen
Misha Khalman
...
Mohammad Saleh
Simon Baumgartner
Jialu Liu
Peter J. Liu
Xuanhui Wang
321
60
0
28 Jan 2025
Generative Monoculture in Large Language Models
Generative Monoculture in Large Language Models
Fan Wu
Emily Black
Varun Chandrasekaran
SyDa
65
5
0
02 Jul 2024
Eliminating Position Bias of Language Models: A Mechanistic Approach
Eliminating Position Bias of Language Models: A Mechanistic Approach
Ziqi Wang
Hanlin Zhang
Xiner Li
Kuan-Hao Huang
Chi Han
Shuiwang Ji
Sham Kakade
Hao Peng
Heng Ji
135
20
0
01 Jul 2024
Regularizing Hidden States Enables Learning Generalizable Reward Model
  for LLMs
Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs
Rui Yang
Ruomeng Ding
Yong Lin
Huan Zhang
Tong Zhang
103
62
0
14 Jun 2024
Robust Preference Optimization through Reward Model Distillation
Robust Preference Optimization through Reward Model Distillation
Adam Fisch
Jacob Eisenstein
Vicky Zayats
Alekh Agarwal
Ahmad Beirami
Chirag Nagpal
Peter Shaw
Jonathan Berant
150
37
0
29 May 2024
SimPO: Simple Preference Optimization with a Reference-Free Reward
SimPO: Simple Preference Optimization with a Reference-Free Reward
Yu Meng
Mengzhou Xia
Danqi Chen
145
492
0
23 May 2024
Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Evaluators
Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Evaluators
Yann Dubois
Balázs Galambosi
Percy Liang
Tatsunori Hashimoto
ALM
141
402
0
06 Apr 2024
Direct Nash Optimization: Teaching Language Models to Self-Improve with
  General Preferences
Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences
Corby Rosset
Ching-An Cheng
Arindam Mitra
Michael Santacroce
Ahmed Hassan Awadallah
Tengyang Xie
199
132
0
04 Apr 2024
Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization
Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization
Hritik Bansal
Ashima Suvarna
Gantavya Bhatt
Nanyun Peng
Kai-Wei Chang
Aditya Grover
ALM
145
11
0
31 Mar 2024
RewardBench: Evaluating Reward Models for Language Modeling
RewardBench: Evaluating Reward Models for Language Modeling
Nathan Lambert
Valentina Pyatkin
Jacob Morrison
Lester James V. Miranda
Bill Yuchen Lin
...
Sachin Kumar
Tom Zick
Yejin Choi
Noah A. Smith
Hanna Hajishirzi
ALM
180
261
0
20 Mar 2024
Human Alignment of Large Language Models through Online Preference
  Optimisation
Human Alignment of Large Language Models through Online Preference Optimisation
Daniele Calandriello
Daniel Guo
Rémi Munos
Mark Rowland
Yunhao Tang
...
Michal Valko
Tianqi Liu
Rishabh Joshi
Zeyu Zheng
Bilal Piot
99
67
0
13 Mar 2024
ORPO: Monolithic Preference Optimization without Reference Model
ORPO: Monolithic Preference Optimization without Reference Model
Jiwoo Hong
Noah Lee
James Thorne
OSLM
100
266
0
12 Mar 2024
Teaching Large Language Models to Reason with Reinforcement Learning
Teaching Large Language Models to Reason with Reinforcement Learning
Alex Havrilla
Yuqing Du
Sharath Chandra Raparthy
Christoforos Nalmpantis
Jane Dwivedi-Yu
Maksym Zhuravinskyi
Eric Hambro
Sainbayar Sukhbaatar
Roberta Raileanu
ReLMLRM
102
94
0
07 Mar 2024
Provably Robust DPO: Aligning Language Models with Noisy Feedback
Provably Robust DPO: Aligning Language Models with Noisy Feedback
Sayak Ray Chowdhury
Anush Kini
Nagarajan Natarajan
80
70
0
01 Mar 2024
Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive
Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive
Arka Pal
Deep Karkhanis
Samuel Dooley
Manley Roberts
Siddartha Naidu
Colin White
OSLM
91
155
0
20 Feb 2024
Direct Preference Optimization with an Offset
Direct Preference Optimization with an Offset
Afra Amini
Tim Vieira
Ryan Cotterell
127
66
0
16 Feb 2024
KTO: Model Alignment as Prospect Theoretic Optimization
KTO: Model Alignment as Prospect Theoretic Optimization
Kawin Ethayarajh
Winnie Xu
Niklas Muennighoff
Dan Jurafsky
Douwe Kiela
277
569
0
02 Feb 2024
Contrastive Preference Optimization: Pushing the Boundaries of LLM
  Performance in Machine Translation
Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation
Haoran Xu
Amr Sharaf
Yunmo Chen
Weiting Tan
Lingfeng Shen
Benjamin Van Durme
Kenton W. Murray
Young Jin Kim
ALM
118
264
0
16 Jan 2024
Some things are more CRINGE than others: Iterative Preference
  Optimization with the Pairwise Cringe Loss
Some things are more CRINGE than others: Iterative Preference Optimization with the Pairwise Cringe Loss
Jing Xu
Andrew Lee
Sainbayar Sukhbaatar
Jason Weston
70
97
0
27 Dec 2023
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate
  Reward Hacking
Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking
Jacob Eisenstein
Chirag Nagpal
Alekh Agarwal
Ahmad Beirami
Alex DÁmour
...
Katherine Heller
Stephen Pfohl
Deepak Ramachandran
Peter Shaw
Jonathan Berant
98
100
0
14 Dec 2023
Nash Learning from Human Feedback
Nash Learning from Human Feedback
Rémi Munos
Michal Valko
Daniele Calandriello
M. G. Azar
Mark Rowland
...
Nikola Momchev
Olivier Bachem
D. Mankowitz
Doina Precup
Bilal Piot
116
147
0
01 Dec 2023
Fine-tuning Language Models for Factuality
Fine-tuning Language Models for Factuality
Katherine Tian
Eric Mitchell
Huaxiu Yao
Christopher D. Manning
Chelsea Finn
KELMHILMSyDa
77
185
0
14 Nov 2023
Safe RLHF: Safe Reinforcement Learning from Human Feedback
Safe RLHF: Safe Reinforcement Learning from Human Feedback
Josef Dai
Xuehai Pan
Ruiyang Sun
Jiaming Ji
Xinbo Xu
Mickel Liu
Yizhou Wang
Yaodong Yang
128
364
0
19 Oct 2023
A General Theoretical Paradigm to Understand Learning from Human
  Preferences
A General Theoretical Paradigm to Understand Learning from Human Preferences
M. G. Azar
Mark Rowland
Bilal Piot
Daniel Guo
Daniele Calandriello
Michal Valko
Rémi Munos
180
647
0
18 Oct 2023
A Long Way to Go: Investigating Length Correlations in RLHF
A Long Way to Go: Investigating Length Correlations in RLHF
Prasann Singhal
Tanya Goyal
Jiacheng Xu
Greg Durrett
141
161
0
05 Oct 2023
Statistical Rejection Sampling Improves Preference Optimization
Statistical Rejection Sampling Improves Preference Optimization
Tianqi Liu
Yao-Min Zhao
Rishabh Joshi
Misha Khalman
Mohammad Saleh
Peter J. Liu
Jialu Liu
133
249
0
13 Sep 2023
Open Problems and Fundamental Limitations of Reinforcement Learning from
  Human Feedback
Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback
Stephen Casper
Xander Davies
Claudia Shi
T. Gilbert
Jérémy Scheurer
...
Erdem Biyik
Anca Dragan
David M. Krueger
Dorsa Sadigh
Dylan Hadfield-Menell
ALMOffRL
140
531
0
27 Jul 2023
Secrets of RLHF in Large Language Models Part I: PPO
Secrets of RLHF in Large Language Models Part I: PPO
Rui Zheng
Shihan Dou
Songyang Gao
Yuan Hua
Wei Shen
...
Hang Yan
Tao Gui
Qi Zhang
Xipeng Qiu
Xuanjing Huang
ALMOffRL
117
174
0
11 Jul 2023
Preference Ranking Optimization for Human Alignment
Preference Ranking Optimization for Human Alignment
Feifan Song
Yu Bowen
Minghao Li
Haiyang Yu
Fei Huang
Yongbin Li
Houfeng Wang
ALM
81
271
0
30 Jun 2023
How Far Can Camels Go? Exploring the State of Instruction Tuning on Open
  Resources
How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources
Yizhong Wang
Hamish Ivison
Pradeep Dasigi
Jack Hessel
Tushar Khot
...
David Wadden
Kelsey MacMillan
Noah A. Smith
Iz Beltagy
Hannaneh Hajishirzi
ALMELM
113
393
0
07 Jun 2023
Rewarded soups: towards Pareto-optimal alignment by interpolating
  weights fine-tuned on diverse rewards
Rewarded soups: towards Pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards
Alexandre Ramé
Guillaume Couairon
Mustafa Shukor
Corentin Dancette
Jean-Baptiste Gaya
Laure Soulier
Matthieu Cord
MoMe
103
157
0
07 Jun 2023
Direct Preference Optimization: Your Language Model is Secretly a Reward
  Model
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
Rafael Rafailov
Archit Sharma
E. Mitchell
Stefano Ermon
Christopher D. Manning
Chelsea Finn
ALM
389
4,169
0
29 May 2023
QLoRA: Efficient Finetuning of Quantized LLMs
QLoRA: Efficient Finetuning of Quantized LLMs
Tim Dettmers
Artidoro Pagnoni
Ari Holtzman
Luke Zettlemoyer
ALM
154
2,611
0
23 May 2023
SLiC-HF: Sequence Likelihood Calibration with Human Feedback
SLiC-HF: Sequence Likelihood Calibration with Human Feedback
Yao-Min Zhao
Rishabh Joshi
Tianqi Liu
Misha Khalman
Mohammad Saleh
Peter J. Liu
86
307
0
17 May 2023
RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment
RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment
Hanze Dong
Wei Xiong
Deepanshu Goyal
Yihan Zhang
Winnie Chow
Boyao Wang
Shizhe Diao
Jipeng Zhang
Kashun Shum
Tong Zhang
ALM
98
468
0
13 Apr 2023
RRHF: Rank Responses to Align Language Models with Human Feedback
  without tears
RRHF: Rank Responses to Align Language Models with Human Feedback without tears
Zheng Yuan
Hongyi Yuan
Chuanqi Tan
Wei Wang
Songfang Huang
Feiran Huang
ALM
167
384
0
11 Apr 2023
Pretraining Language Models with Human Preferences
Pretraining Language Models with Human Preferences
Tomasz Korbak
Kejian Shi
Angelica Chen
Rasika Bhalerao
C. L. Buckley
Jason Phang
Sam Bowman
Ethan Perez
ALMSyDa
91
230
0
16 Feb 2023
Scaling Instruction-Finetuned Language Models
Scaling Instruction-Finetuned Language Models
Hyung Won Chung
Le Hou
Shayne Longpre
Barret Zoph
Yi Tay
...
Jacob Devlin
Adam Roberts
Denny Zhou
Quoc V. Le
Jason W. Wei
ReLMLRM
231
3,158
0
20 Oct 2022
News Summarization and Evaluation in the Era of GPT-3
News Summarization and Evaluation in the Era of GPT-3
Tanya Goyal
Junyi Jessy Li
Greg Durrett
ELM
110
411
0
26 Sep 2022
OPT: Open Pre-trained Transformer Language Models
OPT: Open Pre-trained Transformer Language Models
Susan Zhang
Stephen Roller
Naman Goyal
Mikel Artetxe
Moya Chen
...
Daniel Simig
Punit Singh Koura
Anjali Sridhar
Tianlu Wang
Luke Zettlemoyer
VLMOSLMAI4CE
364
3,700
0
02 May 2022
Training a Helpful and Harmless Assistant with Reinforcement Learning
  from Human Feedback
Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback
Yuntao Bai
Andy Jones
Kamal Ndousse
Amanda Askell
Anna Chen
...
Jack Clark
Sam McCandlish
C. Olah
Benjamin Mann
Jared Kaplan
256
2,627
0
12 Apr 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLMALM
891
13,228
0
04 Mar 2022
Fine-Tuning can Distort Pretrained Features and Underperform
  Out-of-Distribution
Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution
Ananya Kumar
Aditi Raghunathan
Robbie Jones
Tengyu Ma
Percy Liang
OODD
132
685
0
21 Feb 2022
WebGPT: Browser-assisted question-answering with human feedback
WebGPT: Browser-assisted question-answering with human feedback
Reiichiro Nakano
Jacob Hilton
S. Balaji
Jeff Wu
Ouyang Long
...
Gretchen Krueger
Kevin Button
Matthew Knight
B. Chess
John Schulman
ALMRALM
196
1,294
0
17 Dec 2021
LoRA: Low-Rank Adaptation of Large Language Models
LoRA: Low-Rank Adaptation of Large Language Models
J. E. Hu
Yelong Shen
Phillip Wallis
Zeyuan Allen-Zhu
Yuanzhi Li
Shean Wang
Lu Wang
Weizhu Chen
OffRLAI4TSAI4CEALMAIMat
502
10,526
0
17 Jun 2021
Cross-Task Generalization via Natural Language Crowdsourcing
  Instructions
Cross-Task Generalization via Natural Language Crowdsourcing Instructions
Swaroop Mishra
Daniel Khashabi
Chitta Baral
Hannaneh Hajishirzi
LRM
173
753
0
18 Apr 2021
Learning to summarize from human feedback
Learning to summarize from human feedback
Nisan Stiennon
Long Ouyang
Jeff Wu
Daniel M. Ziegler
Ryan J. Lowe
Chelsea Voss
Alec Radford
Dario Amodei
Paul Christiano
ALM
259
2,192
0
02 Sep 2020
Knowledge Distillation: A Survey
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
185
2,993
0
09 Jun 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
92
467
0
21 Feb 2020
12
Next