ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.16682
15
86

Some things are more CRINGE than others: Iterative Preference Optimization with the Pairwise Cringe Loss

27 December 2023
Jing Xu
Andrew Lee
Sainbayar Sukhbaatar
Jason Weston
ArXivPDFHTML
Abstract

Practitioners commonly align large language models using pairwise preferences, i.e., given labels of the type response A is preferred to response B for a given input. Perhaps less commonly, methods have also been developed for binary feedback, i.e. training models given labels of type response A is good or bad. We show how an existing performant binary feedback method, the Cringe Loss (Adolphs et al., 2022), can be generalized to the pairwise preference setting using a simple soft margin extension. Pairwise Cringe Loss is straightforward to implement and efficient to train, and we find it outperforms state-of-the-art preference optimization algorithms such as PPO and DPO on the AlpacaFarm benchmark. We show that iterations of training of our model are important for improved results, and that we can generalize DPO to Iterative DPO in the same way.

View on arXiv
Comments on this paper