ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.03655
  4. Cited By
Geometric Representation Condition Improves Equivariant Molecule Generation
v1v2v3 (latest)

Geometric Representation Condition Improves Equivariant Molecule Generation

4 October 2024
Zian Li
Cai Zhou
Xiyuan Wang
Xingang Peng
Muhan Zhang
ArXiv (abs)PDFHTML

Papers citing "Geometric Representation Condition Improves Equivariant Molecule Generation"

50 / 50 papers shown
Title
Scalable Autoregressive 3D Molecule Generation
Scalable Autoregressive 3D Molecule Generation
Austin H. Cheng
Chong Sun
Alán Aspuru-Guzik
100
1
0
20 May 2025
Straight-Line Diffusion Model for Efficient 3D Molecular Generation
Straight-Line Diffusion Model for Efficient 3D Molecular Generation
Yuyan Ni
Shikun Feng
Haohan Chi
Bowen Zheng
Huan-ang Gao
Wei-Ying Ma
Zhi-Ming Ma
Yanyan Lan
DiffM
112
3
0
04 Mar 2025
UniGEM: A Unified Approach to Generation and Property Prediction for Molecules
UniGEM: A Unified Approach to Generation and Property Prediction for Molecules
Shikun Feng
Yuyan Ni
Yan Lu
Zhi-Ming Ma
Wei-Ying Ma
Yanyan Lan
122
7
0
14 Oct 2024
Pre-training with Fractional Denoising to Enhance Molecular Property
  Prediction
Pre-training with Fractional Denoising to Enhance Molecular Property Prediction
Yuyan Ni
Shikun Feng
Xin Hong
Yuancheng Sun
Wei-Ying Ma
Zhiming Ma
Qiwei Ye
Yanyan Lan
AI4CE
81
18
0
14 Jul 2024
Unified Generative Modeling of 3D Molecules via Bayesian Flow Networks
Unified Generative Modeling of 3D Molecules via Bayesian Flow Networks
Yuxuan Song
Jingjing Gong
Yanru Qu
Hao Zhou
Mingyue Zheng
Jingjing Liu
Wei-Ying Ma
89
13
0
17 Mar 2024
On the Completeness of Invariant Geometric Deep Learning Models
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
99
3
0
07 Feb 2024
Equivariant Flow Matching with Hybrid Probability Transport
Equivariant Flow Matching with Hybrid Probability Transport
Yuxuan Song
Jingjing Gong
Minkai Xu
Ziyao Cao
Yanyan Lan
Stefano Ermon
Hao Zhou
Wei-Ying Ma
DiffM
87
57
0
12 Dec 2023
Guided Flows for Generative Modeling and Decision Making
Guided Flows for Generative Modeling and Decision Making
Qinqing Zheng
Matt Le
Neta Shaul
Y. Lipman
Aditya Grover
Ricky T. Q. Chen
114
46
0
22 Nov 2023
Navigating the Design Space of Equivariant Diffusion-Based Generative
  Models for De Novo 3D Molecule Generation
Navigating the Design Space of Equivariant Diffusion-Based Generative Models for De Novo 3D Molecule Generation
Tuan Le
Julian Cremer
Frank Noé
Djork-Arné Clevert
Kristof T. Schütt
DiffM
131
31
0
29 Sep 2023
Fractional Denoising for 3D Molecular Pre-training
Fractional Denoising for 3D Molecular Pre-training
Shi Feng
Yuyan Ni
Yanyan Lan
Zhiming Ma
Wei-Ying Ma
DiffMAI4CE
109
29
0
20 Jul 2023
Reward-Directed Conditional Diffusion: Provable Distribution Estimation
  and Reward Improvement
Reward-Directed Conditional Diffusion: Provable Distribution Estimation and Reward Improvement
Hui Yuan
Kaixuan Huang
Chengzhuo Ni
Minshuo Chen
Mengdi Wang
DiffM
94
37
0
13 Jul 2023
Geometric Latent Diffusion Models for 3D Molecule Generation
Geometric Latent Diffusion Models for 3D Molecule Generation
Minkai Xu
Alexander Powers
R. Dror
Stefano Ermon
J. Leskovec
DiffMAI4CE
160
152
0
02 May 2023
MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
Clément Vignac
Nagham Osman
Laura Toni
P. Frossard
DiffM
110
63
0
17 Feb 2023
Is Distance Matrix Enough for Geometric Deep Learning?
Is Distance Matrix Enough for Geometric Deep Learning?
Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
73
19
0
11 Feb 2023
Geometry-Complete Diffusion for 3D Molecule Generation and Optimization
Geometry-Complete Diffusion for 3D Molecule Generation and Optimization
Alex Morehead
Jianlin Cheng
DiffM
81
30
0
08 Feb 2023
Graph Generation with Diffusion Mixture
Graph Generation with Diffusion Mixture
Jaehyeong Jo
Dongki Kim
Sung Ju Hwang
DiffM
106
23
0
07 Feb 2023
Fast Graph Generation via Spectral Diffusion
Fast Graph Generation via Spectral Diffusion
Tianze Luo
Zhanfeng Mo
Sinno Jialin Pan
DiffM
101
27
0
16 Nov 2022
Flow Matching for Generative Modeling
Flow Matching for Generative Modeling
Y. Lipman
Ricky T. Q. Chen
Heli Ben-Hamu
Maximilian Nickel
Matt Le
OOD
311
1,394
0
06 Oct 2022
Sampling is as easy as learning the score: theory for diffusion models
  with minimal data assumptions
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
227
279
0
22 Sep 2022
Flow Straight and Fast: Learning to Generate and Transfer Data with
  Rectified Flow
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
Xingchao Liu
Chengyue Gong
Qiang Liu
OOD
274
1,056
0
07 Sep 2022
Diffusion-based Molecule Generation with Informative Prior Bridges
Diffusion-based Molecule Generation with Informative Prior Bridges
Lemeng Wu
Chengyue Gong
Xingchao Liu
Mao Ye
Qiang Liu
DiffM
106
117
0
02 Sep 2022
Convergence of denoising diffusion models under the manifold hypothesis
Convergence of denoising diffusion models under the manifold hypothesis
Valentin De Bortoli
DiffM
100
171
0
10 Aug 2022
Classifier-Free Diffusion Guidance
Classifier-Free Diffusion Guidance
Jonathan Ho
Tim Salimans
FaML
210
3,982
0
26 Jul 2022
Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs
Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs
Rui Jiao
Jiaqi Han
Wenbing Huang
Yu Rong
Yang Liu
AI4CE
101
49
0
18 Jul 2022
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance
  Matching
Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching
Shengchao Liu
Hongyu Guo
Jian Tang
116
80
0
27 Jun 2022
Pre-training via Denoising for Molecular Property Prediction
Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
Michael Schaarschmidt
James Martens
Hyunjik Kim
Yee Whye Teh
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Razvan Pascanu
Jonathan Godwin
DiffMAI4CE
129
127
0
31 May 2022
Equivariant Diffusion for Molecule Generation in 3D
Equivariant Diffusion for Molecule Generation in 3D
Emiel Hoogeboom
Victor Garcia Satorras
Clément Vignac
Max Welling
DiffM
169
628
0
31 Mar 2022
GeoDiff: a Geometric Diffusion Model for Molecular Conformation
  Generation
GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation
Minkai Xu
Lantao Yu
Yang Song
Chence Shi
Stefano Ermon
Jian Tang
BDLDiffM
169
524
0
06 Mar 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
129
197
0
05 Feb 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
615
15,855
0
20 Dec 2021
Top-N: Equivariant set and graph generation without exchangeability
Top-N: Equivariant set and graph generation without exchangeability
Clément Vignac
P. Frossard
BDL
148
35
0
05 Oct 2021
Inverse design of 3d molecular structures with conditional generative
  neural networks
Inverse design of 3d molecular structures with conditional generative neural networks
Niklas W. A. Gebauer
M. Gastegger
Stefaan S. P. Hessmann
Klaus-Robert Muller
Kristof T. Schütt
AI4CE
259
180
0
10 Sep 2021
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
  Property Prediction
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for Property Prediction
Xiaomin Fang
Lihang Liu
Jieqiong Lei
Donglong He
Shanzhuo Zhang
Jingbo Zhou
Fan Wang
Hua Wu
Haifeng Wang
AI4CE
82
460
0
11 Jun 2021
E(n) Equivariant Normalizing Flows
E(n) Equivariant Normalizing Flows
Victor Garcia Satorras
Emiel Hoogeboom
F. Fuchs
Ingmar Posner
Max Welling
BDL
113
182
0
19 May 2021
An Empirical Study of Training Self-Supervised Vision Transformers
An Empirical Study of Training Self-Supervised Vision Transformers
Xinlei Chen
Saining Xie
Kaiming He
ViT
183
1,875
0
05 Apr 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
117
1,038
0
19 Feb 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
554
6,606
0
26 Nov 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
772
41,877
0
22 Oct 2020
A Contrastive Learning Approach for Training Variational Autoencoder
  Priors
A Contrastive Learning Approach for Training Variational Autoencoder Priors
J. Aneja
Alex Schwing
Jan Kautz
Arash Vahdat
DRL
124
83
0
06 Oct 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLMDiffM
334
7,531
0
06 Oct 2020
GEOM: Energy-annotated molecular conformations for property prediction
  and molecular generation
GEOM: Energy-annotated molecular conformations for property prediction and molecular generation
Simon Axelrod
Rafael Gómez-Bombarelli
3DVAI4CE
120
222
0
09 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
1.2K
42,712
0
28 May 2020
Cormorant: Covariant Molecular Neural Networks
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
139
426
0
06 Jun 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRLBDL
209
1,832
0
02 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
164
211
0
02 Jun 2019
Diagnosing and Enhancing VAE Models
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
101
381
0
14 Mar 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLMSSLSSeg
1.9K
95,604
0
11 Oct 2018
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
152
980
0
22 Feb 2018
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
259
5,093
0
02 Nov 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
980
133,429
0
12 Jun 2017
1