ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.12244
  4. Cited By
Sparks of Artificial General Intelligence(AGI) in Semiconductor Material
  Science: Early Explorations into the Next Frontier of Generative AI-Assisted
  Electron Micrograph Analysis

Sparks of Artificial General Intelligence(AGI) in Semiconductor Material Science: Early Explorations into the Next Frontier of Generative AI-Assisted Electron Micrograph Analysis

17 September 2024
Sakhinana Sagar Srinivas
Geethan Sannidhi
Sreeja Gangasani
Chidaksh Ravuru
Venkataramana Runkana
ArXiv (abs)PDFHTML

Papers citing "Sparks of Artificial General Intelligence(AGI) in Semiconductor Material Science: Early Explorations into the Next Frontier of Generative AI-Assisted Electron Micrograph Analysis"

43 / 43 papers shown
Title
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for
  Subject-Driven Generation
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
Nataniel Ruiz
Yuanzhen Li
Varun Jampani
Yael Pritch
Michael Rubinstein
Kfir Aberman
279
2,885
0
25 Aug 2022
Hierarchical Text-Conditional Image Generation with CLIP Latents
Hierarchical Text-Conditional Image Generation with CLIP Latents
Aditya A. Ramesh
Prafulla Dhariwal
Alex Nichol
Casey Chu
Mark Chen
VLMDiffM
410
6,897
0
13 Apr 2022
How to Find Your Friendly Neighborhood: Graph Attention Design with
  Self-Supervision
How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision
Dongkwan Kim
Alice Oh
SSLGNN
92
260
0
11 Apr 2022
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
280
30,103
0
01 Mar 2022
Learning to Merge Tokens in Vision Transformers
Learning to Merge Tokens in Vision Transformers
Cédric Renggli
André Susano Pinto
N. Houlsby
Basil Mustafa
J. Puigcerver
C. Riquelme
MoMe
64
58
0
24 Feb 2022
High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
460
15,665
0
20 Dec 2021
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViTTPM
467
7,814
0
11 Nov 2021
An Empirical Study of Graph Contrastive Learning
An Empirical Study of Graph Contrastive Learning
Yanqiao Zhu
Yichen Xu
Qiang Liu
Shu Wu
75
172
0
02 Sep 2021
PVT v2: Improved Baselines with Pyramid Vision Transformer
PVT v2: Improved Baselines with Pyramid Vision Transformer
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViTAI4TS
106
1,675
0
25 Jun 2021
Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and
  Interpretable Visual Understanding
Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding
Zizhao Zhang
Han Zhang
Long Zhao
Ting Chen
Sercan O. Arik
Tomas Pfister
ViT
59
173
0
26 May 2021
With a Little Help from My Friends: Nearest-Neighbor Contrastive
  Learning of Visual Representations
With a Little Help from My Friends: Nearest-Neighbor Contrastive Learning of Visual Representations
Debidatta Dwibedi
Y. Aytar
Jonathan Tompson
P. Sermanet
Andrew Zisserman
SSL
235
467
0
29 Apr 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
694
6,079
0
29 Apr 2021
PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural
  Machine Learning Models
PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models
Benedek Rozemberczki
P. Scherer
Yixuan He
G. Panagopoulos
Alexander Riedel
...
Oliver Kiss
Ferenc Béres
Guzmán López
Nicolas Collignon
Rik Sarkar
AI4CE
72
203
0
15 Apr 2021
Escaping the Big Data Paradigm with Compact Transformers
Escaping the Big Data Paradigm with Compact Transformers
Ali Hassani
Steven Walton
Nikhil Shah
Abulikemu Abuduweili
Jiachen Li
Humphrey Shi
120
462
0
12 Apr 2021
Rethinking Spatial Dimensions of Vision Transformers
Rethinking Spatial Dimensions of Vision Transformers
Byeongho Heo
Sangdoo Yun
Dongyoon Han
Sanghyuk Chun
Junsuk Choe
Seong Joon Oh
ViT
506
581
0
30 Mar 2021
CvT: Introducing Convolutions to Vision Transformers
CvT: Introducing Convolutions to Vision Transformers
Haiping Wu
Bin Xiao
Noel Codella
Mengchen Liu
Xiyang Dai
Lu Yuan
Lei Zhang
ViT
152
1,915
0
29 Mar 2021
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image
  Classification
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
Chun-Fu Chen
Quanfu Fan
Yikang Shen
ViT
71
1,482
0
27 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
455
21,439
0
25 Mar 2021
DeepViT: Towards Deeper Vision Transformer
DeepViT: Towards Deeper Vision Transformer
Daquan Zhou
Bingyi Kang
Xiaojie Jin
Linjie Yang
Xiaochen Lian
Zihang Jiang
Qibin Hou
Jiashi Feng
ViT
99
522
0
22 Mar 2021
ConViT: Improving Vision Transformers with Soft Convolutional Inductive
  Biases
ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases
Stéphane dÁscoli
Hugo Touvron
Matthew L. Leavitt
Ari S. Morcos
Giulio Biroli
Levent Sagun
ViT
129
832
0
19 Mar 2021
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Jure Zbontar
Li Jing
Ishan Misra
Yann LeCun
Stéphane Deny
SSL
335
2,362
0
04 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIPVLM
967
29,731
0
26 Feb 2021
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
418
4,987
0
24 Feb 2021
Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
258
4,067
0
20 Nov 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
664
41,369
0
22 Oct 2020
Simple and Deep Graph Convolutional Networks
Simple and Deep Graph Convolutional Networks
Ming Chen
Zhewei Wei
Zengfeng Huang
Bolin Ding
Yaliang Li
GNN
121
1,486
0
04 Jul 2020
Implicit Neural Representations with Periodic Activation Functions
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
159
2,571
0
17 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
371
6,833
0
13 Jun 2020
One-Shot Recognition of Manufacturing Defects in Steel Surfaces
One-Shot Recognition of Manufacturing Defects in Steel Surfaces
Aditya M. Deshpande
A. Minai
Manish Kumar
37
58
0
12 May 2020
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
207
12,085
0
13 Nov 2019
Graph U-Nets
Graph U-Nets
Hongyang Gao
Shuiwang Ji
AI4CESSLSSegGNN
132
1,092
0
11 May 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DHGNN3DPC
229
4,341
0
06 Mar 2019
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Johannes Klicpera
Aleksandar Bojchevski
Stephan Günnemann
GNN
222
1,691
0
14 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLMSSLSSeg
1.8K
95,114
0
11 Oct 2018
Attention-based Graph Neural Network for Semi-supervised Learning
Attention-based Graph Neural Network for Semi-supervised Learning
K. K. Thekumparampil
Chong-Jun Wang
Sewoong Oh
Li Li
GNN
76
333
0
10 Mar 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,164
0
30 Oct 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,455
0
04 Apr 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
775
36,861
0
25 Aug 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
353
7,655
0
30 Jun 2016
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
  model size
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
153
7,495
0
24 Feb 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
477
43,685
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,479
0
04 Sep 2014
1