ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.07594
  4. Cited By
Automated Discovery of Pairwise Interactions from Unstructured Data

Automated Discovery of Pairwise Interactions from Unstructured Data

11 September 2024
Zuheng
Xu
Moksh Jain
Ali Denton
Shawn Whitfield
Aniket Didolkar
Berton Earnshaw
Jason S. Hartford
ArXiv (abs)PDFHTML

Papers citing "Automated Discovery of Pairwise Interactions from Unstructured Data"

20 / 20 papers shown
Title
Virtual Cells: Predict, Explain, Discover
Virtual Cells: Predict, Explain, Discover
Emmanuel Noutahi
Jason Hartford
Prudencio Tossou
Shawn T. Whitfield
Alisandra K. Denton
...
Emmanuel Bengio
Dominique Beaini
Christopher Gibson
Daniel Cohen
Berton Earnshaw
74
0
0
20 May 2025
Season combinatorial intervention predictions with Salt & Peper
Season combinatorial intervention predictions with Salt & Peper
Thomas Gaudelet
Alice Del Vecchio
Eli M. Carrami
Juliana Cudini
Chantriolnt-Andreas Kapourani
Caroline Uhler
Lindsay Edwards
90
9
0
25 Apr 2024
Modelling Cellular Perturbations with the Sparse Additive Mechanism
  Shift Variational Autoencoder
Modelling Cellular Perturbations with the Sparse Additive Mechanism Shift Variational Autoencoder
Michael D. Bereket
Theofanis Karaletsos
DRL
74
19
0
05 Nov 2023
Masked Autoencoders are Scalable Learners of Cellular Morphology
Masked Autoencoders are Scalable Learners of Cellular Morphology
Oren Z. Kraus
Kian Kenyon-Dean
Saber Saberian
Maryam Fallah
Peter McLean
...
Chi Vicky Cheng
Kristen Morse
Maureen Makes
Ben Mabey
Berton Earnshaw
75
15
0
27 Sep 2023
Modern Bayesian Experimental Design
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
97
88
0
28 Feb 2023
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OODCMLDRL
71
39
0
07 Nov 2022
Neural Design for Genetic Perturbation Experiments
Neural Design for Genetic Perturbation Experiments
Aldo Pacchiano
Drausin Wulsin
Robert A. Barton
L. Voloch
73
5
0
26 Jul 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViTTPM
480
7,837
0
11 Nov 2021
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
Arash Mehrjou
Ashkan Soleymani
Andrew Jesson
Pascal Notin
Y. Gal
Stefan Bauer
Patrick Schwab
86
21
0
22 Oct 2021
On Linear Identifiability of Learned Representations
On Linear Identifiability of Learned Representations
Geoffrey Roeder
Luke Metz
Diederik P. Kingma
CML
66
85
0
01 Jul 2020
Composable Effects for Flexible and Accelerated Probabilistic
  Programming in NumPyro
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
Du Phan
Neeraj Pradhan
M. Jankowiak
66
360
0
24 Dec 2019
Understanding the Limitations of Variational Mutual Information
  Estimators
Understanding the Limitations of Variational Mutual Information Estimators
Jiaming Song
Stefano Ermon
SSLDRL
74
204
0
14 Oct 2019
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDLGP
158
1,057
0
18 Oct 2018
Learning deep representations by mutual information estimation and
  maximization
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSLDRL
355
2,675
0
20 Aug 2018
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive
  Learning
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
Aapo Hyvarinen
Hiroaki Sasaki
Richard Turner
OODCML
100
331
0
22 May 2018
An Information-Theoretic Analysis of Thompson Sampling
An Information-Theoretic Analysis of Thompson Sampling
Daniel Russo
Benjamin Van Roy
186
426
0
21 Mar 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
153
1,167
0
31 Dec 2013
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
693
31,571
0
16 Jan 2013
Automated Variational Inference in Probabilistic Programming
Automated Variational Inference in Probabilistic Programming
David Wingate
T. Weber
BDLTPM
101
139
0
07 Jan 2013
Universality, Characteristic Kernels and RKHS Embedding of Measures
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
224
531
0
03 Mar 2010
1