ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.06142
  4. Cited By
Variational Search Distributions

Variational Search Distributions

10 September 2024
Daniel M. Steinberg
Rafael Oliveira
Cheng Soon Ong
Edwin V. Bonilla
ArXivPDFHTML

Papers citing "Variational Search Distributions"

50 / 51 papers shown
Title
Overconfident Oracles: Limitations of In Silico Sequence Design Benchmarking
Shikha Surana
Nathan Grinsztajn
Timothy Atkinson
Paul Duckworth
Thomas D. Barrett
94
4
0
24 Feb 2025
Closed-Form Test Functions for Biophysical Sequence Optimization
  Algorithms
Closed-Form Test Functions for Biophysical Sequence Optimization Algorithms
Samuel Stanton
R. Alberstein
Nathan C. Frey
Andrew Watkins
Kyunghyun Cho
79
5
0
28 Jun 2024
A survey and benchmark of high-dimensional Bayesian optimization of
  discrete sequences
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
54
5
0
07 Jun 2024
A Continuous Relaxation for Discrete Bayesian Optimization
A Continuous Relaxation for Discrete Bayesian Optimization
Richard Michael
Simon Bartels
Miguel González Duque
Yevgen Zainchkovskyy
J. Frellsen
Søren Hauberg
Wouter Boomsma
20
4
0
26 Apr 2024
Posterior Sampling-Based Bayesian Optimization with Tighter Bayesian
  Regret Bounds
Posterior Sampling-Based Bayesian Optimization with Tighter Bayesian Regret Bounds
Shion Takeno
Yu Inatsu
Masayuki Karasuyama
Ichiro Takeuchi
59
6
0
07 Nov 2023
BayesDAG: Gradient-Based Posterior Inference for Causal Discovery
BayesDAG: Gradient-Based Posterior Inference for Causal Discovery
Yashas Annadani
Nick Pawlowski
Joel Jennings
Stefan Bauer
Cheng Zhang
Wenbo Gong
CML
BDL
54
19
0
26 Jul 2023
Learning Regions of Interest for Bayesian Optimization with Adaptive
  Level-Set Estimation
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation
Fengxue Zhang
Jialin Song
James Bowden
Alexander Ladd
Yisong Yue
Thomas Desautels
Yuxin Chen
52
7
0
25 Jul 2023
Improving Protein Optimization with Smoothed Fitness Landscapes
Improving Protein Optimization with Smoothed Fitness Landscapes
Andrew Kirjner
Jason Yim
Raman Samusevich
Shahar Bracha
Tommi Jaakkola
Regina Barzilay
Ila Fiete
42
17
0
02 Jul 2023
Kernelized Reinforcement Learning with Order Optimal Regret Bounds
Kernelized Reinforcement Learning with Order Optimal Regret Bounds
Sattar Vakili
Julia Olkhovskaya
47
9
0
13 Jun 2023
Protein Design with Guided Discrete Diffusion
Protein Design with Guided Discrete Diffusion
Nate Gruver
Samuel Stanton
Nathan C. Frey
Tim G. J. Rudner
I. Hotzel
J. Lafrance-Vanasse
A. Rajpal
Kyunghyun Cho
A. Wilson
DiffM
66
113
0
31 May 2023
Characterizing the Spectrum of the NTK via a Power Series Expansion
Characterizing the Spectrum of the NTK via a Power Series Expansion
Michael Murray
Hui Jin
Benjamin Bowman
Guido Montúfar
61
11
0
15 Nov 2022
Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic
  Reparameterization
Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization
Sam Daulton
Xingchen Wan
David Eriksson
Maximilian Balandat
Michael A. Osborne
E. Bakshy
60
38
0
18 Oct 2022
Batch Bayesian optimisation via density-ratio estimation with guarantees
Batch Bayesian optimisation via density-ratio estimation with guarantees
Rafael Oliveira
Louis C. Tiao
Fabio Ramos
70
7
0
22 Sep 2022
Formal Algorithms for Transformers
Formal Algorithms for Transformers
Mary Phuong
Marcus Hutter
45
73
0
19 Jul 2022
A General Recipe for Likelihood-free Bayesian Optimization
A General Recipe for Likelihood-free Bayesian Optimization
Jiaming Song
Lantao Yu
Willie Neiswanger
Stefano Ermon
55
24
0
27 Jun 2022
Diffusion-LM Improves Controllable Text Generation
Diffusion-LM Improves Controllable Text Generation
Xiang Lisa Li
John Thickstun
Ishaan Gulrajani
Percy Liang
Tatsunori B. Hashimoto
AI4CE
216
818
0
27 May 2022
Accelerating Bayesian Optimization for Biological Sequence Design with
  Denoising Autoencoders
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
53
96
0
23 Mar 2022
Design-Bench: Benchmarks for Data-Driven Offline Model-Based
  Optimization
Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization
Brandon Trabucco
Xinyang Geng
Aviral Kumar
Sergey Levine
OffRL
69
100
0
17 Feb 2022
A Survey of Controllable Text Generation using Transformer-based
  Pre-trained Language Models
A Survey of Controllable Text Generation using Transformer-based Pre-trained Language Models
Hanqing Zhang
Haolin Song
Shaoyu Li
Ming Zhou
Dawei Song
71
220
0
14 Jan 2022
Conservative Objective Models for Effective Offline Model-Based
  Optimization
Conservative Objective Models for Effective Offline Model-Based Optimization
Brandon Trabucco
Aviral Kumar
Xinyang Geng
Sergey Levine
OffRL
65
92
0
14 Jul 2021
BORE: Bayesian Optimization by Density-Ratio Estimation
BORE: Bayesian Optimization by Density-Ratio Estimation
Louis C. Tiao
Aaron Klein
Matthias Seeger
Edwin V. Bonilla
Cédric Archambeau
F. Ramos
58
28
0
17 Feb 2021
Non-asymptotic approximations of neural networks by Gaussian processes
Non-asymptotic approximations of neural networks by Gaussian processes
Ronen Eldan
Dan Mikulincer
T. Schramm
99
23
0
17 Feb 2021
On the Origin of Implicit Regularization in Stochastic Gradient Descent
On the Origin of Implicit Regularization in Stochastic Gradient Descent
Samuel L. Smith
Benoit Dherin
David Barrett
Soham De
MLT
32
204
0
28 Jan 2021
AdaLead: A simple and robust adaptive greedy search algorithm for
  sequence design
AdaLead: A simple and robust adaptive greedy search algorithm for sequence design
Sam Sinai
Richard Wang
Alexander Whatley
Stewart Slocum
Elina Locane
Eric D. Kelsic
57
79
0
05 Oct 2020
On the linearity of large non-linear models: when and why the tangent
  kernel is constant
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
104
141
0
02 Oct 2020
Implicit Gradient Regularization
Implicit Gradient Regularization
David Barrett
Benoit Dherin
67
151
0
23 Sep 2020
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
115
94
0
22 Sep 2020
On Information Gain and Regret Bounds in Gaussian Process Bandits
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
52
133
0
15 Sep 2020
Infinite attention: NNGP and NTK for deep attention networks
Infinite attention: NNGP and NTK for deep attention networks
Jiri Hron
Yasaman Bahri
Jascha Narain Sohl-Dickstein
Roman Novak
24
114
0
18 Jun 2020
Sample-Efficient Optimization in the Latent Space of Deep Generative
  Models via Weighted Retraining
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
56
139
0
16 Jun 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
298
10,591
0
17 Feb 2020
Plug and Play Language Models: A Simple Approach to Controlled Text
  Generation
Plug and Play Language Models: A Simple Approach to Controlled Text Generation
Sumanth Dathathri
Andrea Madotto
Janice Lan
Jane Hung
Eric Frank
Piero Molino
J. Yosinski
Rosanne Liu
KELM
121
968
0
04 Dec 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
67
408
0
25 Jun 2019
A view of Estimation of Distribution Algorithms through the lens of
  Expectation-Maximization
A view of Estimation of Distribution Algorithms through the lens of Expectation-Maximization
David H. Brookes
A. Busia
Clara Fannjiang
Kevin Patrick Murphy
Jennifer Listgarten
47
22
0
24 May 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient
  Descent
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
176
1,097
0
18 Feb 2019
Conditioning by adaptive sampling for robust design
Conditioning by adaptive sampling for robust design
David H. Brookes
Hahnbeom Park
Jennifer Listgarten
52
199
0
29 Jan 2019
Machine Learning for Combinatorial Optimization: a Methodological Tour
  d'Horizon
Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon
Yoshua Bengio
Andrea Lodi
Antoine Prouvost
153
1,377
0
15 Nov 2018
Design by adaptive sampling
Design by adaptive sampling
David H. Brookes
Jennifer Listgarten
TPM
71
66
0
08 Oct 2018
Stochastic Variational Optimization
Stochastic Variational Optimization
Thomas Bird
Julius Kunze
David Barber
DRL
34
14
0
13 Sep 2018
Singular Value Decomposition of Operators on Reproducing Kernel Hilbert
  Spaces
Singular Value Decomposition of Operators on Reproducing Kernel Hilbert Spaces
Mattes Mollenhauer
Ingmar Schuster
Stefan Klus
Christof Schütte
38
19
0
24 Jul 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
232
3,191
0
20 Jun 2018
The reparameterization trick for acquisition functions
The reparameterization trick for acquisition functions
James T. Wilson
Riccardo Moriconi
Frank Hutter
M. Deisenroth
54
79
0
01 Dec 2017
The Implicit Bias of Gradient Descent on Separable Data
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
127
914
0
27 Oct 2017
Streaming kernel regression with provably adaptive mean, variance, and
  regularization
Streaming kernel regression with provably adaptive mean, variance, and regularization
A. Durand
Odalric-Ambrym Maillard
Joelle Pineau
37
43
0
02 Aug 2017
On Kernelized Multi-armed Bandits
On Kernelized Multi-armed Bandits
Sayak Ray Chowdhury
Aditya Gopalan
109
460
0
03 Apr 2017
Truncated Variance Reduction: A Unified Approach to Bayesian
  Optimization and Level-Set Estimation
Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation
Ilija Bogunovic
Jonathan Scarlett
Andreas Krause
Volkan Cevher
76
91
0
24 Oct 2016
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
147
2,921
0
07 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
63
1,091
0
16 Aug 2016
Discovering Valuable Items from Massive Data
Discovering Valuable Items from Massive Data
Hastagiri P. Vanchinathan
Andreas Marfurt
C. Robelin
Donald Kossmann
Andreas Krause
50
36
0
02 Jun 2015
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
101
1,165
0
31 Dec 2013
12
Next