ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.03543
  4. Cited By
Prediction Accuracy & Reliability: Classification and Object
  Localization under Distribution Shift

Prediction Accuracy & Reliability: Classification and Object Localization under Distribution Shift

5 September 2024
Fabian Diet
Moussa Kassem Sbeyti
Michelle Karg
ArXiv (abs)PDFHTML

Papers citing "Prediction Accuracy & Reliability: Classification and Object Localization under Distribution Shift"

35 / 35 papers shown
Title
Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time
Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time
Huaxiu Yao
Caroline Choi
Bochuan Cao
Yoonho Lee
Pang Wei Koh
Chelsea Finn
OOD
71
77
0
25 Nov 2022
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
178
5,213
0
10 Jan 2022
OOD-CV: A Benchmark for Robustness to Out-of-Distribution Shifts of
  Individual Nuisances in Natural Images
OOD-CV: A Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images
Bingchen Zhao
Shaozuo Yu
Wufei Ma
M. Yu
Shenxiao Mei
Angtian Wang
Ju He
Alan Yuille
Adam Kortylewski
50
53
0
29 Nov 2021
Covariate Shift in High-Dimensional Random Feature Regression
Covariate Shift in High-Dimensional Random Feature Regression
Nilesh Tripuraneni
Ben Adlam
Jeffrey Pennington
OOD
45
24
0
16 Nov 2021
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing,
  and Improving Uncertainty Quantification
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification
Youngseog Chung
I. Char
Han Guo
J. Schneider
Willie Neiswanger
77
72
0
21 Sep 2021
Objects are Different: Flexible Monocular 3D Object Detection
Objects are Different: Flexible Monocular 3D Object Detection
Yunpeng Zhang
Jiwen Lu
Jie Zhou
3DPC
69
258
0
06 Apr 2021
Active Learning for Deep Object Detection via Probabilistic Modeling
Active Learning for Deep Object Detection via Probabilistic Modeling
Jiwoong Choi
Ismail Elezi
Hyuk-Jae Lee
C. Farabet
J. Álvarez
66
123
0
30 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
463
21,564
0
25 Mar 2021
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
225
1,445
0
14 Dec 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAMLUQCVEDL
98
226
0
20 Nov 2020
Hyper-Parameter Optimization: A Review of Algorithms and Applications
Hyper-Parameter Optimization: A Review of Algorithms and Applications
Tong Yu
Hong Zhu
AAML
75
539
0
12 Mar 2020
Canadian Adverse Driving Conditions Dataset
Canadian Adverse Driving Conditions Dataset
Matthew A. Pitropov
D. Garcia
Jason Rebello
Michael H. W. Smart
Carlos Wang
Krzysztof Czarnecki
Steven Waslander
71
223
0
27 Jan 2020
Deep Ensembles: A Loss Landscape Perspective
Deep Ensembles: A Loss Landscape Perspective
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
OODUQCV
123
629
0
05 Dec 2019
EfficientDet: Scalable and Efficient Object Detection
EfficientDet: Scalable and Efficient Object Detection
Mingxing Tan
Ruoming Pang
Quoc V. Le
115
5,061
0
20 Nov 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
195
2,242
0
05 Jul 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
183
1,702
0
06 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DVMedIm
153
18,179
0
28 May 2019
Uncertainty Estimation in One-Stage Object Detection
Uncertainty Estimation in One-Stage Object Detection
Florian Kraus
Klaus C. J. Dietmayer
UQCV
60
83
0
24 May 2019
CenterNet: Keypoint Triplets for Object Detection
CenterNet: Keypoint Triplets for Object Detection
Kaiwen Duan
S. Bai
Lingxi Xie
H. Qi
Qingming Huang
Q. Tian
NoLa
119
2,698
0
17 Apr 2019
Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization
  Uncertainty for Autonomous Driving
Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving
Jiwoong Choi
Dayoung Chun
Hyun Kim
Hyuk-Jae Lee
77
402
0
09 Apr 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OODVLM
191
3,452
0
28 Mar 2019
nuScenes: A multimodal dataset for autonomous driving
nuScenes: A multimodal dataset for autonomous driving
Holger Caesar
Varun Bankiti
Alex H. Lang
Sourabh Vora
Venice Erin Liong
Qiang Xu
Anush Krishnan
Yuxin Pan
G. Baldan
Oscar Beijbom
3DPC
301
5,779
0
26 Mar 2019
On Evaluating Adversarial Robustness
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELMAAML
98
905
0
18 Feb 2019
Do ImageNet Classifiers Generalize to ImageNet?
Do ImageNet Classifiers Generalize to ImageNet?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OODSSegVLM
121
1,726
0
13 Feb 2019
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDLUQCV
201
636
0
01 Jul 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
204
19,333
0
13 Jan 2018
Deeper, Broader and Artier Domain Generalization
Deeper, Broader and Artier Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
124
1,451
0
09 Oct 2017
Mask R-CNN
Mask R-CNN
Kaiming He
Georgia Gkioxari
Piotr Dollár
Ross B. Girshick
ObjD
363
27,244
0
20 Mar 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDLOODUDUQCVPER
362
4,719
0
15 Mar 2017
YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set
  for Object Detection in Video
YouTube-BoundingBoxes: A Large High-Precision Human-Annotated Data Set for Object Detection in Video
Esteban Real
Jonathon Shlens
S. Mazzocchi
Xin Pan
Vincent Vanhoucke
VOSObjD
95
534
0
02 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
842
5,841
0
05 Dec 2016
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li
Kevin Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
227
2,334
0
21 Mar 2016
SSD: Single Shot MultiBox Detector
SSD: Single Shot MultiBox Detector
Wen Liu
Dragomir Anguelov
D. Erhan
Christian Szegedy
Scott E. Reed
Cheng-Yang Fu
Alexander C. Berg
ObjDBDL
246
29,871
0
08 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
852
9,346
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
460
7,667
0
03 Jul 2012
1