Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2408.15507
Cited By
What Machine Learning Tells Us About the Mathematical Structure of Concepts
28 August 2024
Jun Otsuka
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What Machine Learning Tells Us About the Mathematical Structure of Concepts"
8 / 8 papers shown
Title
Word2Box: Capturing Set-Theoretic Semantics of Words using Box Embeddings
S. Dasgupta
Michael Boratko
Siddhartha Mishra
Shriya Atmakuri
Dhruvesh Patel
Xiang Lorraine Li
Andrew McCallum
NAI
49
21
0
28 Jun 2021
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,837
0
06 May 2019
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCL
DRL
95
479
0
05 Dec 2018
Poincaré Embeddings for Learning Hierarchical Representations
Maximilian Nickel
Douwe Kiela
85
1,304
0
22 May 2017
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
178
3,690
0
10 Jun 2016
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
160
1,934
0
24 Feb 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
660
31,490
0
16 Jan 2013
1