ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.15507
  4. Cited By
What Machine Learning Tells Us About the Mathematical Structure of
  Concepts

What Machine Learning Tells Us About the Mathematical Structure of Concepts

28 August 2024
Jun Otsuka
ArXivPDFHTML

Papers citing "What Machine Learning Tells Us About the Mathematical Structure of Concepts"

7 / 7 papers shown
Title
Word2Box: Capturing Set-Theoretic Semantics of Words using Box
  Embeddings
Word2Box: Capturing Set-Theoretic Semantics of Words using Box Embeddings
S. Dasgupta
Michael Boratko
Siddhartha Mishra
Shriya Atmakuri
Dhruvesh Patel
Xiang Lorraine Li
Andrew McCallum
NAI
49
21
0
28 Jun 2021
Adversarial Examples Are Not Bugs, They Are Features
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,837
0
06 May 2019
Towards a Definition of Disentangled Representations
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCL
DRL
95
479
0
05 Dec 2018
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
176
3,690
0
10 Jun 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
148
1,934
0
24 Feb 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
648
31,490
0
16 Jan 2013
1