ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2407.10204
  4. Cited By
Improving Graph Out-of-distribution Generalization Beyond Causality
v1v2 (latest)

Improving Graph Out-of-distribution Generalization Beyond Causality

14 July 2024
Can Xu
Yao Cheng
Jianxiang Yu
Haosen Wang
Jingsong Lv
Yao Liu
Xiang Li
    OOD
ArXiv (abs)PDFHTML

Papers citing "Improving Graph Out-of-distribution Generalization Beyond Causality"

19 / 19 papers shown
Title
Cooperative Classification and Rationalization for Graph Generalization
Cooperative Classification and Rationalization for Graph Generalization
Linan Yue
Qi Liu
Ye Liu
Weibo Gao
Fangzhou Yao
Wenfeng Li
75
10
0
10 Mar 2024
Environment-Aware Dynamic Graph Learning for Out-of-Distribution
  Generalization
Environment-Aware Dynamic Graph Learning for Out-of-Distribution Generalization
Haonan Yuan
Qingyun Sun
Xingcheng Fu
Ziwei Zhang
Cheng Ji
Hao Peng
Jianxin Li
OOD
89
22
0
18 Nov 2023
Learning Invariant Molecular Representation in Latent Discrete Space
Learning Invariant Molecular Representation in Latent Discrete Space
Zhuang Xiang
Qiang Zhang
Keyan Ding
Yatao Bian
Xiao Wang
Jingsong Lv
Hongyang Chen
Huajun Chen
OOD
77
20
0
22 Oct 2023
MARIO: Model Agnostic Recipe for Improving OOD Generalization of Graph
  Contrastive Learning
MARIO: Model Agnostic Recipe for Improving OOD Generalization of Graph Contrastive Learning
Yun Zhu
Haizhou Shi
Zhenshuo Zhang
Siliang Tang
81
9
0
24 Jul 2023
Individual and Structural Graph Information Bottlenecks for
  Out-of-Distribution Generalization
Individual and Structural Graph Information Bottlenecks for Out-of-Distribution Generalization
Ling Yang
Jiayi Zheng
Heyuan Wang
Zhongyi Liu
Zhilin Huang
Shenda Hong
Wentao Zhang
Tengjiao Wang
85
16
0
28 Jun 2023
Unleashing the Power of Graph Data Augmentation on Covariate
  Distribution Shift
Unleashing the Power of Graph Data Augmentation on Covariate Distribution Shift
Yongduo Sui
Qitian Wu
Jiancan Wu
Daixin Wang
Longfei Li
An Zhang
Xiang Wang
Xiangnan He
OOD
82
37
0
05 Nov 2022
Learning on Large-scale Text-attributed Graphs via Variational Inference
Learning on Large-scale Text-attributed Graphs via Variational Inference
Jianan Zhao
Meng Qu
Chaozhuo Li
Hao Yan
Qian Liu
Rui Li
Xing Xie
Jian Tang
VLM
99
142
0
26 Oct 2022
GOOD: A Graph Out-of-Distribution Benchmark
GOOD: A Graph Out-of-Distribution Benchmark
Shurui Gui
Xiner Li
Limei Wang
Shuiwang Ji
OOD
78
123
0
16 Jun 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OODAI4CE
165
234
0
30 Jan 2022
Generalizing Graph Neural Networks on Out-Of-Distribution Graphs
Generalizing Graph Neural Networks on Out-Of-Distribution Graphs
Shaohua Fan
Xiao Wang
Chuan Shi
Peng Cui
Bai Wang
CMLOODOODDAI4CE
131
88
0
20 Nov 2021
Generalizing to Unseen Domains: A Survey on Domain Generalization
Generalizing to Unseen Domains: A Survey on Domain Generalization
Jindong Wang
Cuiling Lan
Chang-Shu Liu
Yidong Ouyang
Tao Qin
Wang Lu
Yiqiang Chen
Wenjun Zeng
Philip S. Yu
OOD
219
1,230
0
02 Mar 2021
Environment Inference for Invariant Learning
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
61
384
0
14 Oct 2020
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRLBDL
77
106
0
03 Apr 2019
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
182
694
0
15 Nov 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
337
1,837
0
02 Mar 2017
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Baochen Sun
Kate Saenko
OOD
105
3,165
0
06 Jul 2016
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GANOOD
390
9,515
0
28 May 2015
Causal inference using invariant prediction: identification and
  confidence intervals
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
122
973
0
06 Jan 2015
Unsupervised Domain Adaptation by Backpropagation
Unsupervised Domain Adaptation by Backpropagation
Yaroslav Ganin
Victor Lempitsky
OOD
242
6,041
0
26 Sep 2014
1